Zhang C, Zhao YS, Yao JN. Optical waveguides at micro/nanoscale based on functional small organic molecules. Phys Chem Chem Phys. 2011;13:9060–73.
Article
Google Scholar
Cui QH, Zhao YS, Yao JN. Photonic applications of one-dimensional organic single-crystalline nanostructures: optical waveguides and optically pumped lasers. J Mater Chem. 2012;22:4136–40.
Article
Google Scholar
Yanagi H, Morikawa T. Self-waveguided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition. Appl Phys Lett. 1999;75:187–9.
Article
Google Scholar
Clark J, Lanzani G. Organic photonics for communications. Nat Photonics. 2010;4:438–46.
Article
Google Scholar
An BK, Kwon SK, Park SY. Photopatterned arrays of fluorescent organic nanoparticles. Angew Chem Int Ed. 2007;46:1978–82.
Article
Google Scholar
Shi YL, Zhuo MP, Wang XD, Liao LS. Two-dimensional organic semiconductor crystals for photonics applications. ACS Appl Nano Mater. 2020;3:1080–97.
Article
Google Scholar
Collet E, Lemee-Cailleau MH, Buron-Le Cointe M, Cailleau H, Wulff M, Luty T, Koshihara SY, Meyer M, Toupet L, Rabiller P, Techert SM, Toupet L, Rabiller P, Techert S. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science. 2003;300:612–5.
Article
Google Scholar
Zhao YS, Wu JS, Huang JX. Vertical organic nanowire arrays controlled synthesis and chemical sensors. J Am Chem Soc. 2009;131:3158–9.
Article
Google Scholar
Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, Kwok HS, Zhan XW, Liu YQ, Zhu DB, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001:1740–1.
Lei YL, Jin Y, Zhou DY, Gu W, Shi XB, Liao LS, Lee ST. White-light emitting microtubes of mixed organic charge-transfer complexes. Adv Mater. 2012;24:5345–51.
Article
Google Scholar
Zhang YF, Peng C, Cui B, Wang ZF, Pang XB, Ma RM, Liu F, Che YK, Zhao JC. Direction-controlled light-driven movement of microribbons. Adv Mater. 2016;28:8538–45.
Article
Google Scholar
Bisri SZ, Piliego C, Gao J, Loi MA. Outlook and emerging semiconducting materials for ambipolar transistors. Adv Mater. 2014;26:1176–99.
Article
Google Scholar
Guo YL, Yu G, Liu YQ. Functional organic field-effect transistors. Adv Mater. 2010;22:4427–47.
Article
Google Scholar
Mas-Torrent M, Hadley P, Bromley S, Ribas X, Tarres J, Mas M, Molins E, Veciana J, Rovira C. Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of Tetrathiafulvalene derivatives. J Am Chem Soc. 2004;126:8546–53.
Article
Google Scholar
Kim J, Cho S, Kang J, Kim YH, Park SK. Large-scale organic single-crystal thin films and transistor arrays via the evaporation-controlled fluidic channel method. ACS Appl Mater Interfaces. 2014;6:7133–40.
Article
Google Scholar
Helfrich W, Schneider WG. Recombination radiation in Anthracene crystals. Phys Rev Lett. 1965;14:229–31.
Article
Google Scholar
Che Y, Yang X, Loser S, Zang L. Expedient vapor probing of organic amines using fluorescent Nanofibers fabricated from an n-type organic semiconductor. Nano Lett. 2008;8:2219–23.
Article
Google Scholar
Li ZZ, Liang F, Zhuo MP, Shi YL, Wang XD, Liao LS. White-emissive self-assembled organic microcrystals. Small. 2017;13:1604110.
Article
Google Scholar
Zheng JY, Zhang C, Zhao YS, Yao JN. Detection of chemical vapors with tunable emission of binary organic nanobelts. Phys Chem Chem Phys. 2010;12:12935–8.
Article
Google Scholar
Zhang HY, Zhang ZL, Ye KQ, Zhang JY, Wang Y. Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures. Adv Mater. 2006;18:2369–72.
Article
Google Scholar
Chandrasekar R. Organic photonics: prospective nano/micro scale passive organic optical waveguides obtained from π-conjugated ligand molecules. Phys Chem Chem Phys. 2014;16:7173–83.
Article
Google Scholar
Venkatakrishnarao D, Mohiddon MA, Chandrasekhar N, Chandrasekar R. Photonic microrods composed of photoswitchable molecules: erasable heterostructure waveguides for tunable optical modulation. Adv Opt Mater. 2015;3:1035–40.
Article
Google Scholar
Chandrasekhar N, Mohiddon MA, Chandrasekar R. Organic submicro tubular optical waveguides: self-assembly, diverse geometries, efficiency, and remote sensing properties. Adv Opt Mater. 2013;1:305–11.
Article
Google Scholar
Hui P, Chandrasekar R. Light propagation in high-spin organic microtubes self-assembled from shape persistent macrocycles carrying oxo-verdazyl biradicals. Adv Mater. 2013;25:2963–7.
Article
Google Scholar
Basak S, Chandrasekar. Passive optical waveguiding organic rectangular tubes: tube cutting, controlling light propagation distance and multiple optical out-put. J Mater Chem C. 2014;2:1404.
Article
Google Scholar
Lin CCC, Chang PH, Su YW, Helmy AS. Monolithic Plasmonic Waveguide Architecture for Passive and Active Optical Circuits. Nano Lett. 2020;20:2950–7.
Article
Google Scholar
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: flexible single-crystal organic waveguides and circuits. Angew Chem Int Ed. 2020;59:13852–8.
Article
Google Scholar
Zhao GY, Dong HL, Liao Q, Jiang J, Luo Y, Fu HB, Hu WP. Organic field-effect optical waveguides. Nat Commun. 2018;9:4790–7.
Article
Google Scholar
Zhang C, Zheng JY, Zhao YS, Yao JN. Self-modulated white light outcoupling in doped organic nanowire waveguides via the fluctuations of singlet and triplet excitons during propagation. Adv Mater. 2011;23:1380–4.
Article
Google Scholar
Zheng JY, Yan YL, Wang XP, Zhao YS, Huang JX, Yao JN. Wire-on-wire growth of fluorescent organic heterojunctions. J Am Chem Soc. 2012;134:2880–3.
Article
Google Scholar
Zheng JY, Yan Y, Wang X, Shi W, Ma H, Zhao YS, Yao JN. Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides. Adv Mater. 2012;24:OP194–9 OP86.
Article
Google Scholar
Zhuo MP, Wu JJ, Wang XD, Tao YC, Yuan Y, Liao LS. Hierarchical self-assembly of organic heterostructure nanowires. Nat Commun. 2019;10:3839.
Article
Google Scholar
Bao QL, Goh BM, Yan B, Yu T, Shen ZA, Loh KP. Polarized emission and optical waveguide in crystalline perylene diimide microwires. Adv Mater. 2010;22:3661–6.
Article
Google Scholar
Li Q, Jia Y, Dai LR, Yang Y, Li JB. Controlled rod nanostructured assembly of Diphenylalanine and their optical waveguide properties. ACS Nano. 2015;9:2689–95.
Article
Google Scholar
Cui QH, Peng Q, Luo Y, Jiang YQ, Yan YL, Wei C, Shuai ZG, Sun C, Yao JN, Zhao YS. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion. Sci Adv. 2018;4:eaap9861.
Article
Google Scholar
Wei GQ, Tao YC, Wu JJ, Li ZZ, Zhuo MP, Wang XD, Liao LS. Low-threshold organic lasers based on single-crystalline microribbons of aggregation-induced emission Luminogens. J Phys Chem Lett. 2019;10:679–84.
Article
Google Scholar
Hayashi S, Yamamoto SY, Takeuchi D, Ie Y, Takagi K. Creating Elastic Organic Crystals of π-Conjugated Molecules with Bending Mechanofluorochromism and Flexible Optical Waveguide. Angew Chem Int Ed. 2018;57:17002–8.
Article
Google Scholar
Liu HP, Lu ZQ, Zhang ZL, Wang Y, Zhang HY. Highly elastic organic crystals for flexible optical waveguides. Angew Chem Int Ed. 2018;57:8448.
Article
Google Scholar
Pradeep VV, Tardío C, Torres-Moya I, Rodríguez AM, Kumar AV, Annadhasan M, Hoz ADL, Prieto P, Chandrasekar R. Mechanical processing of naturally bent organic crystalline microoptical waveguides and junctions. Small. 2020;17:2006795.
Article
Google Scholar
Zhao YS, Xu JJ, Peng AD, Fu HB, Ma Y, Jiang L, Yao JN. Optical waveguide based on crystalline organic microtubes and microrods. Angew Chem Int Ed. 2008;47:7301–5.
Article
Google Scholar
Seok Min Yoon JL, Je JH, Choi HC, Yoon M. Optical Waveguiding and lasing action in Porphyrin rectangular microtube with Subwavelength Wall thicknesses. ACS Nano. 2011;5:2923–7.
Article
Google Scholar
Zhuo MP, Tao YC, Wang XD, Chen S, Liao LS. Rational synthesis of organic single-crystalline microrods and microtubes for efficient optical waveguides. J Mater Chem C. 2018;6:9594–8.
Article
Google Scholar
Liao Q, Fu HB, Yao JN. Waveguide modulator by energy remote relay from binary organic crystalline microtubes. Adv Mater. 2009;21:4153–7.
Article
Google Scholar
Zhuo MP, Fei XY, Tao YC, Fan J, Wang XD, Xie WF, Liao LS. In situ construction of one-dimensional component-interchange organic Core/Shell microrods for multicolor continuous-variable optical waveguide. ACS Appl Mater Interfaces. 2019;11:5298–305.
Article
Google Scholar
Li ZZ, Wu JJ, Wang XD, Wang KL, Zhang S, Xie WF, Liao LS. Controllable fabrication of in-series organic Heterostructures for optical waveguide application. Adv Opt Mater. 2019;7:1900373.
Article
Google Scholar
Sun MJ, Liu YY, Yan YM, Li R, Shi Q, Zhao YS, Zhong YW, Yao JN. In situ visualization of assembly and photonic signal processing in a triplet light-harvesting Nanosystem. J Am Chem Soc. 2018;140:4269–78.
Article
Google Scholar
Kong QH, Liao Q, Xu ZZ, Wang XD, Yao JN, Fu HB. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications. J Am Chem Soc. 2014;136:2382–8.
Article
Google Scholar
Li ZZ, Tao YC, Wang XD, Liao LS. Organic Nanophotonics: self-assembled single-crystalline homo−/Heterostructures for optical waveguides. ACS Photo. 2018;5:3763–71.
Article
Google Scholar
Min S, Dhamsaniya A, Zhang L, Hou G, Huang Z, Pambhar K, Shah AK, Mehta VP, Liu Z, Song B. Scale effect of a fluorescent waveguide in organic micromaterials: a case study based on Coumarin microfibers. J Phys Chem Lett. 2019;10:5997–6002.
Article
Google Scholar
Yan YL, Zhao YS. Exciton Polaritons in 1D organic Nanocrystals. Adv Funct Mater. 2012;22:1330–2.
Article
Google Scholar
Zhang C, Zou CL, Yan Y, Hao R, Sun FW, Han ZF, Zhao YS, Yao JN. Two-photon pumped lasing in single-crystal organic nanowire Exciton Polariton resonators. J Am Chem Soc. 2011;133:7276–9.
Article
Google Scholar
Andreani L, Panzarini G, Gerard J. Strong-coupling regime for quantum boxes in pillar microcavities theory. Phys Rev B. 1999;60:13276–9.
Article
Google Scholar
Pile D, Forrest S. Organic polariton laser. Nat Photonics. 2010;4:402.
Article
Google Scholar
Takazawa K, Inoue J, Mitsuishi K, Takamasu T. Fraction of a millimeter propagation of exciton polaritons in photoexcited nanofibers of organic dye. Phys Rev Lett. 2010;105:067401.
Article
Google Scholar
Takazawa K, Inoue J, Mitsuishi K, Takamasu T. Micrometer-scale photonic circuit components based on propagation of exciton polaritons in organic dye nanofibers. Adv Mater. 2011;23:3659–63.
Article
Google Scholar
van Vugt LK, Ruhle S, Ravindran P, Gerritsen HC, Kuipers L, Vanmaekelbergh D. Exciton polaritons confined in a ZnO nanowire cavity. Phys Rev Lett. 2006;97:147401.
Article
Google Scholar
Zhao YS, Zhan P, Kim JY, Sun C, Huang JX. Patterned growth of vertically aligned. ACS Nano. 2010;4:1630–6.
Article
Google Scholar
Wang JF, Gudiksen MS, Duan XF, Cui Y, Lieber CM. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science. 2001;293:1455–7.
Article
Google Scholar
Wang ZL. Nanobelts, nanowires, and Nanodiskettes of semiconducting oxides-from materials to Nanodevices. Adv Mater. 2003;15:432–6.
Article
MathSciNet
Google Scholar
Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet Photodetectors and optical switches. Adv Mater. 2002;14:158–3.
Article
Google Scholar
Wang XD, Liao Q, Kong QH, Zhang Y, Xu ZZ, Lu XM, Fu HB. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks. Angew Chem Int Ed. 2014;53:5863–7.
Article
Google Scholar
Wang XD, Li H, Wu YS, Xu ZZ, Fu HB. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation. J Am Chem Soc. 2014;136:16602–8.
Article
Google Scholar
Wang XD, Liao Q, Li H, Bai SM, Wu YS, Lu XM, Hu HY, Shi Q, Fu HB. Near-infrared lasing from small-molecule organic hemispheres. J Am Chem Soc. 2015;137:9289–95.
Article
Google Scholar
Briseno AL, Mannsfeld SCB, Ling MM, Liu SH, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao ZN. Patterning organic single-crystal transistor arrays. Nature. 2006;444:913–7.
Article
Google Scholar
Bisri SZ, Takenobu T, Yomogida Y, Shimotani H, Yamao T, Hotta S, Iwasa Y. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv Funct Mater. 2009;19:1728–35.
Article
Google Scholar
Hotta S, Yamao T, Bisri SZ, Takenobu T, Iwasa Y. Organic single-crystal light-emitting field-effect transistors. J Mater Chem C. 2014;2:965–80.
Article
Google Scholar
Zhu WG, Zheng RH, Fu XL, Fu HB, Shi Q, Zhen YG, Dong HL, Hu WP. Revealing the charge-transfer interactions in self-assembled organic cocrystals: two-dimensional photonic applications. Angew Chem Int Ed. 2015;54:6785–9.
Article
Google Scholar
Yu PP, Zhen YG, Dong HL, Hu WP. Crystal engineering of organic optoelectronic materials. Chem. 2019;5:2814–53.
Article
Google Scholar
Yan B, Liao L, You YM, Xu XJ, Zheng Z, Shen ZX, Ma J, Tong LM, Yu T. Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv Mater. 2009;21:2436–40.
Article
Google Scholar
Sun FF, Sun LX, Zhang B, Chen G, Wang HL, Shen XC, Wei L. Optical waveguide of buckled CdS nanowires modulated by strain engineering. ACS Photo. 2018;5:746–51.
Article
Google Scholar
Jadhav T, Dhokale B, Patil Y, Mobin SM, Misra R. Multi-stimuli responsive donor–acceptor Tetraphenylethylene substituted Benzothiadiazoles. J Phys Chem C. 2016;120:24030–40.
Article
Google Scholar
Yao W, Yan YL, Xue L, Zhang C, Li GP, Zheng QD, Zhao YS, Jiang H, Yao JN. Controlling the structures and photonic properties of organic nanomaterials by molecular design. Angew Chem Int Ed. 2013;52:8713–7.
Article
Google Scholar
Zhang C, Yan YL, Zhao YS, Yao JN. From molecular design and materials construction to organic nanophotonic devices. Acc Chem Res. 2014;47:3448–58.
Article
Google Scholar
Mitetelo N, Venkatakrishnarao D, Ravi J, Popov M, Mamonov E, Murzina TV, Chandrasekar R. Chirality-controlled multiphoton luminescence and second-harmonic generation from Enantiomeric organic micro-optical waveguides. Adv Opt Mater. 2019;7:1801775–6.
Article
Google Scholar
High AA, Novitskaya EE, Butov LV, Hanson M, Gossard AC. Control of exciton fluxes in an excitonic integrated circuit. Science. 2008;321:229–31.
Article
Google Scholar
Davoyan A, Engheta N. Electrically controlled one-way photon flow in plasmonic nanostructures. Nat Commun. 2014;5:5250.
Article
Google Scholar
Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature. 2005;435:325–7.
Article
Google Scholar
Hu WL, Chen YK, Jiang H, Li J, Zou JG, Zhang QJ, Zhang DG, Wang P, Ming H. Optical waveguide based on a polarized polydiacetylene microtube. Adv Mater. 2014;26:3136–41.
Article
Google Scholar
Yan Y, Zhang C, Zheng JY, Yao JN, Zhao YS. Optical modulation based on direct photon-plasmon coupling in organic/metal nanowire heterojunctions. Adv Mater. 2012;24:5681–6.
Article
Google Scholar
Liu Y, Hu HP, Xu L, Qiu B, Liang J, Ding F, Wang K, Chu MM, Zhang W, Ma M, Chen B, Yang XZ, Zhao YS. Orientation-controlled 2D anisotropic and isotropic photon transport in co-crystal polymorph microplates. Angew Chem Int Ed. 2020;59:4456–63.
Article
Google Scholar
Tang B, Zhang ZL, Liu HP, Zhang HY. Amplified spontaneous emission, optical waveguide and polarized emission based on 2,5-diaminoterephthalates. Chin Chem Lett. 2017;28:2129–32.
Article
Google Scholar
Ghosh S, Reddy CM. Elastic and bendable caffeine cocrystals: implications for the design of flexible organic materials. Angew Chem Int Ed. 2012;51:10319–23.
Article
Google Scholar
Ghosh S, Mishra MK, Kadambi SB, Ramamurty U, Desiraju GR. Designing elastic organic crystals: highly flexible polyhalogenated N-benzylideneanilines. Angew Chem Int Ed. 2015;54:2674–8.
Article
Google Scholar
Catalano L, Karothu DP, Schramm S, Ahmed E, Rezgui R, Barber TJ, Famulari A, Naumov P. Dual-mode light transduction through a plastically bendable organic crystal as an optical waveguide. Angew Chem Int Ed. 2018;57:17254–8.
Article
Google Scholar
Annadhasan M, Karothu DP, Chinnasamy R, Catalano L, Ahmed E, Ghosh S, Naumov P, Chandrasekar R. Micromanipulation of mechanically compliant organic single-Crystal Optical microwaveguides. Angew Chem Int Ed. 2020;59:13821–30.
Article
Google Scholar
Zhu L, Al-Kaysi RO, Bardeen CJ. Reversible photoinduced twisting of molecular crystal microribbons. J Am Chem Soc. 2011;133:12569–75.
Article
Google Scholar
Saha S, Desiraju GR. Crystal engineering of hand-twisted helical crystals. J Am Chem Soc. 2017;139:1975–83.
Article
Google Scholar
Zhuo MP, Zhang YX, Li ZZ, Shi YL, Wang XD, Liao LS. Controlled synthesis of organic single-crystalline nanowires via the synergy approach of the bottom-up/top-down processes. Nanoscale. 2018;10:5140–7.
Article
Google Scholar
Fang XY, Yang XG, Yan DP. Vapor-phase π-π molecular recognition: a fast and solvent-free strategy towards the formation of co-crystalline hollow microtube with 1D optical waveguide and up-conversion emission. J Mater Chem C. 2017;5:1632–7.
Article
Google Scholar
Venkataramudu U, Venkatakrishnarao D, Chandrasekhar N, Mohiddon MA, Chandrasekar R. Single-particle to single-particle transformation of an active type organic μ-tubular homo-structure photonic resonator into a passive type hetero-structure resonator. Phys Chem Chem Phys. 2016;18:15528–33.
Article
Google Scholar
Sun YQ, Lei YL, Liao LS, Hu WP. Competition between Arene-Perfluoroarene and charge-transfer interactions in organic light-harvesting systems. Angew Chem Int Ed. 2017;56:10352–6.
Article
Google Scholar
Sun YQ, Lei YL, Sun XH, Lee ST, Liao LS. Charge-transfer emission of mixed organic Cocrystal microtubes over the whole composition range. Chem Mater. 2015;27:1157–63.
Article
Google Scholar
Xia HY, Chen YK, Yang G, Zou G, Zhang QJ, Zhang DG, Wang P, Ming H. Optical modulation of waveguiding in spiropyran-functionalized polydiacetylene microtube. ACS Appl Mater Interfaces. 2014;6:15466–71.
Article
Google Scholar
Zhou ZH, Zhao JY, Du YX, Wang K, Liang J, Yan YL, Zhao YS. Organic printed Core-Shell Heterostructure arrays: a universal approach to all-color laser display panels. Angew Chem Int Ed. 2020;59:11814–8.
Article
Google Scholar
Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater. 2009;8:126–31.
Article
Google Scholar
Jang J, Oh JH. Facile fabrication of photochromic dye–conducting polymer Core–Shell Nanomaterials and their photoluminescence. Adv Mater. 2003;15:977–80.
Article
Google Scholar
Cui QH, Jiang L, Zhang C, Zhao YS, Hu WP, Yao JN. Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties. Adv Mater. 2012;24:2332–6.
Article
Google Scholar
Pan DC, Wang Q, Jiang SC, Ji XL, An LJ. Synthesis of extremely small CdSe and highly luminescent CdSe/CdS Core-Shell Nanocrystals via a novel two-phase thermal approach. Adv Mater. 2005;17:176–4.
Article
Google Scholar
Mahler B, Nadal B, Bouet C, Patriarche G, Dubertret B. Core/shell colloidal semiconductor nanoplatelets. J Am Chem Soc. 2012;134:18591–8.
Article
Google Scholar
Zhu WG, Zhu LY, Zou Y, Wu YS, Zhen YG, Dong HL, Fu HB, Wei ZX, Shi Q, Hu WP. Deepening insights of charge transfer and Photophysics in a novel donor-acceptor Cocrystal for waveguide couplers and photonic logic computation. Adv Mater. 2016;28:5954–62.
Article
Google Scholar
Lei YL, Liao Q, Fu HB, Jao JN. Orange-blue-Orange Triblock one-dimensional Heterostructures of organic microrods for white-light emission. J Am Chem Soc. 2010;132:1742.
Article
Google Scholar
Ye X, Liu Y, Guo Q, Han Q, Ge C, Cui S, Zhang L, Tao XT. 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat Commun. 2019;10:761.
Article
Google Scholar
Zhang C, Yan YL, Jing YY, Shi Q, Zhao YS, Yao JN. One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission. Adv Mater. 2012;24:1703–8.
Article
Google Scholar
Zhang C, Yan Y, Yao JN, Zhao YS. Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices. Adv Mater. 2013;25:2854–9.
Article
Google Scholar
Yang C, Gu L, Ma C, Gu M, Xie X, Shi H, Ma H, Yao W, An Z, Huang W. Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. Mater Horiz. 2019;6:984–9.
Article
Google Scholar
Tao YC, Peng S, Wang XD, Li ZZ, Zhang XJ, Liao LS. Sequential self-assembly of 1D branched organic Homostructures with optical logic gate function. Adv Funct Mater. 2018;28:1804915.
Article
Google Scholar
Zhang Y, Liao Q, Wang XG, Yao JN, Fu HB. Lattice-matched epitaxial growth of organic Heterostructures for integrated optoelectronic application. Angew Chem Int Ed. 2017;56:3616–20.
Article
Google Scholar
Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX. Branched silver nanowires as controllable plasmon routers. Nano Lett. 2010;10:1950–4.
Article
Google Scholar
Yao W, Han GC, Huang F, Chu MM, Peng Q, Hu FQ, Yi YP, Jiang H, Yao JN, Zhao YS. "H"-like organic nanowire Heterojunctions constructed from cooperative molecular assembly for photonic applications. Adv Sci. 2015;2:1500130.
Article
Google Scholar
Yu Y, Tao YC, Zou SN, Li ZZ, Yan CC, Zhuo MP, Wang XD, Liao LS. Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Sci China Chem. 2020;63:1477–82.
Article
Google Scholar