Skip to main content

Featured Articles

Nonlinear meta-optics towards applications

meta-opticsNonlinear optical effects have enabled numerous applications such as laser frequency conversion, ultrafast electro-optical, and all-optical modulation. Both gaseous and bulk media have conventionally been used for free-space nonlinear optical applications, yet they often require complex phase-matching techniques for efficient operation and may have limited operation bandwidth due to the material absorption. In the last decade, meta-optics made of subwavelength antennas or films have emerged as novel nonlinear optical media that may potentially overcome certain limitations of bulk crystals. Due to resonant enhancements of the pump laser field as well as the use of materials with extreme nonlinearity such as epsilon-near-zero materials, meta-optics can achieve strong nonlinear responses with a subwavelength thickness. Here, we review several nonlinear optical applications, such as electric-field-induced second-harmonic generation, entangled photon pair generation, terahertz generation, all-optical modulation, and high-harmonic generation that we envision meta-optics may have distinct advantages over their bulk counterparts. We outline the challenges still faced by nonlinear meta-optics and point out some potential directions.

Optical waveguides based on one-dimensional organic crystals

 waveguidesOptical waveguide of organic micro/nanocrystals is one of crucial elements in miniaturized integrated photonics. One-dimensional (1D) organic crystals with various optical features have attracted increasing interests towards promising photonic devices, such as multichannel signal converter, organic field-effect optical waveguide, sensitive detector, and optical logic gate. Therefore, a summary about the 1D organic micro/nanocrystals based optical waveguide is important for the rational design and fabrication of novel optical devices towards optoelectronics applications. Herein, recent advances of optical waveguide based on 1D organic micro/nanocrystals with solid, flexible, hollow, uniformly doped, core-shell, multiblock and branched structures are summarized from the aspects of the waveguide properties and applications in photonic devices. Furthermore, we presented our personal view about the expectation of future development in 1D organic optical waveguide for the photonic applications.

  1. Authors: Xiujuan Zou, Gaige Zheng, Quan Yuan, Wenbo Zang, Run Chen, Tianyue Li, Lin Li, Shuming Wang, Zhenlin Wang and Shining Zhu

    Content type: Review

Aims and scope

PhotoniX aims to cover all aspects of fundamental and cutting-edge photonic technology. Original scientific letters, articles, reviews, and technology progress reports are equally welcome.

Topics within the journal’s scope include but are not limited to:

  • Light manipulation and applications, beam propagation and steering techniques
  • Optical communication, storage, information processing and computing
  • Photonics for big data and artificial intelligence
  • Astrophotonics and aero-space optics
  • Optical sensing technologies
  • Terahertz and X-ray optics
  • Green technologies
  • Small-scale optics
  • Nonlinear optics
  • Optoelectronics
  • Meta optics
  • Bionics

Why submit to us?

1. About photonics but truly cross-disciplinary
2. Fully Open Access with high visibility
3. An official journal of the Chinese Society for Optical Engineering (CSOE) and APC fully covered by CSOE (in first two years)
4. Served by a renowned, dedicated and international editorial board to give professional editorial response

Editors' Quotes

Editor-in-Chief Min Gu "It is no doubt that photonics has become a key enabling technology platform for our sustainable life. It is at this exciting time that we welcome the arrival of the inaugural issue of the journal, PhotoniX, to our photonics community. We aim that the new journal not only truly showcases the enabling power of photonics, but also strives to develop this power into cultivating industries as well as improving the competitiveness, the scope and depth of science and technology in general..." 

Editor-in-Chief Min Qiu "This open-access journal focuses on photonic technology with cutting-edge, multidisciplinary and derivative characteristics, aiming to become a platform to promote the international frontier "Enabling Technology". It comes at a crucial moment when both academia and industry urgently need a platform to explore the true enabling power of photonics..." 

Read More

Editor-in-Chief: Min Gu

New Content Item

He is Executive Chancellor and Distinguished Professor of University of Shanghai for Science and Technology. He was Distinguished Professor and Associate Deputy Vice-Chancellor at RMIT University and a Laureate Fellow of the Australian Research Council. He is an author of 4 standard reference books and has over 500 publications in nano/biophotonics. He is an elected fellow of the Australian Academy of Science and the Australian Academy of Technological Sciences and Engineering as well as foreign fellow of the Chinese Academy of Engineering. He is also an elected fellow of the AIP, the OSA, the SPIE, the InstP, and the IEEE. He was President of the International Society of Optics within Life Sciences, Vice President of the Board of the International Commission for Optics (ICO) (Chair of the ICO Prize Committee) and a Director of the Board of the Optical Society of America (Chair of the International Council). He was awarded the Einstein Professorship, the W. H. (Beattie) Steel Medal, the Ian Wark Medal, the Boas Medal and the Victoria Prize for Science and Innovation. He is a winner of the 2019 Dennis Gabor Award of SPIE.

Editor-in-Chief: Min Qiu

New Content Item

He received the Ph.D. degree from Zhejiang University in 1999. He received his second Ph.D. degree and became an assistant professor at the Royal Institute of Technology (KTH), Stockholm, Sweden, in 2001. He became a full professor (Professor of Photonics) at KTH in 2009. Since 2010, he became a distinguished professor at Zhejiang University. He was the Director of State Key Laboratory of Modern Optical Instrumentation, Zhejiang University. He joined Westlake University as a Chair Professor of Photonics in April 2018. His research interests include nanofabrication technology, nanophotonics, and green photonics. He was elected a fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2015, a fellow of the Optical Society of America (OSA) and a fellow of the International Society for Optics and Photonics (SPIE) in 2013. He is leading a project on solar thermal energy utilization through the National Key Research and Development Program of China (No. 2017YFA0205700). He is currently an editor of Optics Communications (Elsevier), a topical editor of Light: Science and Applications (Springer Nature), and an associate editor of Science Bulletin (Science China Press).

Sponsored by

New Content Item

Chinese Society for Optical Engineering

New Content Item

University of Shanghai for Science and Technology

New Content Item

Westlake University

Annual Journal Metrics

  • Speed
    33 days to first decision for reviewed manuscripts only
    27 days to first decision for all manuscripts
    72 days from submission to acceptance
    38 days from acceptance to publication

    Usage 
    33,714 downloads