Goel A, Manik G. Solar thermal system—an insight into parabolic trough solar collector and its modeling. Renewable Energy Systems: Elsevier; 2021. p. 309–37.
Google Scholar
Dudley B. BP statistical review of world energy. BP Stat Rev London, UK. 2018;2018(6):00116.
Google Scholar
by fuel type-Exajoules, C. bp Statistical Review of World Energy. 2006
Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181–9.
Article
Google Scholar
Da Rosa AV, Ordóñez JC. Fundamentals of renewable energy processes: Academic; 2021.
Google Scholar
World Energy Council. World energy resources report; 2016.
Google Scholar
Twidell J. Renewable energy resources: Routledge; 2021.
Book
Google Scholar
Kamran M, Fazal MR. Fundamentals of renewable energy systems: Academic; 2021.
Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sust Energ Rev. 2011;15(4):1777–90.
Article
Google Scholar
Sherwood AN, Nikolic M, Humphrey JW, et al. Greek and Roman technology: a sourcebook: annotated translations of Greek and Latin texts and documents: Routledge; 2003.
Book
Google Scholar
Plantzos D. Crystals and lenses in the Graeco-Roman world. Am J Archaeol. 1997;101(3):451–64.
Article
Google Scholar
Meijer F. A history of seafaring in the classical world (Routledge revivals): Routledge; 2014.
Book
Google Scholar
Tian Y, Zhao C-Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;104:538–53.
Article
Google Scholar
Romero M, Steinfeld A. Concentrating solar thermal power and thermochemical fuels. Energy Environ Sci. 2012;5(11):9234–45.
Article
Google Scholar
Lovegrove K, Stein W. Concentrating solar power technology: principles. Developments and Applications: Woodhead Publishing; 2012.
Book
Google Scholar
Nation DD, Heggs PJ, Dixon-Hardy DW. Modelling and simulation of a novel electrical energy storage (EES) receiver for solar parabolic trough collector (PTC) power plants. Appl Energy. 2017;195:950–73.
Article
Google Scholar
Hossain M, Saidur R, Fayaz H, et al. Review on solar water heater collector and thermal energy performance of circulating pipe. Renew Sust Energ Rev. 2011;15(8):3801–12.
Article
Google Scholar
Hossain E, Petrovic S. Solar thermal energy. In: Renewable energy crash course: Springer; 2021. p. 61–8.
Chapter
Google Scholar
Hachicha AA, Yousef BA, Said Z, et al. A review study on the modeling of high-temperature solar thermal collector systems. Renew Sust Energ Rev. 2019;112:280–98.
Article
Google Scholar
Blanco M. Advances in concentrating solar thermal research and technology: Woodhead Publishing; 2016.
Google Scholar
Islam MT, Huda N, Abdullah A, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. Renew Sust Energ Rev. 2018;91:987–1018.
Article
Google Scholar
Esen M. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Sol Energy. 2004;76(6):751–7.
Article
Google Scholar
Esen M, Esen H. Experimental investigation of a two-phase closed thermosyphon solar water heater. Sol Energy. 2005;79(5):459–68.
Article
MATH
Google Scholar
Alam T, Saini R, Saini J. Heat transfer enhancement due to V-shaped perforated blocks in a solar air heater duct. In: Applied mechanics and materials; 2014. p. 125–9. Trans Tech Publ.
Google Scholar
Alam T, Kim M-H. Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles. Energy. 2016;112:588–98.
Article
Google Scholar
Esen M, Yuksel T. Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build. 2013;65:340–51.
Article
Google Scholar
Al-harahsheh M, Abu-Arabi M, Mousa H, et al. Solar desalination using solar still enhanced by external solar collector and PCM. Appl Therm Eng. 2018;128:1030–40.
Article
Google Scholar
Garg HP, Mullick S, Bhargava VK. Solar thermal energy storage: Springer Science & Business Media; 2012.
Google Scholar
Mehrali M, Johan E, Shahi M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem Eng J. 2021;405:126624.
Article
Google Scholar
Li Y, Chen Y, Huang X, et al. Anisotropy-functionalized cellulose-based phase change materials with reinforced solar-thermal energy conversion and storage capacity. Chem Eng J. 2021;415:129086.
Article
Google Scholar
Sharma V, Kumar A, Sastry O, et al. Performance assessment of different solar photovoltaic technologies under similar outdoor conditions. Energy. 2013;58:511–8.
Article
Google Scholar
Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem. 2005;44(20):6841–51.
Article
Google Scholar
Izquierdo S, Montañés C, Dopazo C, et al. Analysis of CSP plants for the definition of energy policies: the influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy. 2010;38(10):6215–21.
Article
Google Scholar
Yılmaz İH, Mwesigye A. Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review. Appl Energy. 2018;225:135–74.
Article
Google Scholar
Bellos E, Tzivanidis C. Alternative designs of parabolic trough solar collectors. Prog Energy Combust Sci. 2019;71:81–117.
Article
Google Scholar
Rasul M. Clean energy for sustainable development: comparisons and contrasts of new approaches: Academic; 2016.
Google Scholar
Suman S, Khan MK, Pathak M. Performance enhancement of solar collectors—a review. Renew Sust Energ Rev. 2015;49:192–210.
Article
Google Scholar
Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95.
Article
Google Scholar
Zayed ME, Zhao J, Elsheikh AH, et al. Applications of cascaded phase change materials in solar water collector storage tanks: a review. Sol Energy Mater Sol Cells. 2019;199:24–49.
Article
Google Scholar
Mancini T, Heller P, Butler B, et al. Dish-Stirling systems: An overview of development and status. J Sol Energy Eng. 2003;125(2):135–51.
Article
Google Scholar
Stine W, Diver R. A compendium of solar dish Stirling technology. Report SAND 937026. Albuquerque: Sandia National Laboratories; 1994.
Google Scholar
Kearney A. Solar thermal electricity 2025. Clean electricity on demand: Atractive STE cost stabilize energy production; 2010.
Google Scholar
Ho CK, Iverson BD. Review of high-temperature central receiver designs for concentrating solar power. Renew Sust Energ Rev. 2014;29:835–46.
Article
Google Scholar
Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants. Renew Sust Energ Rev. 2013;23:12–39.
Article
Google Scholar
Yogev A, Kribus A, Epstein M, et al. Solar “tower reflector” systems: a new approach for high-temperature solar plants. Int J Hydrog Energy. 1998;23(4):239–45.
Article
Google Scholar
Mills D. Advances in solar thermal electricity technology. Sol Energy. 2004;76(1-3):19–31.
Article
Google Scholar
Yu N, Genevet P, Kats MA, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7.
Article
Google Scholar
Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50.
Article
Google Scholar
Chen H-T, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401.
Article
Google Scholar
Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys. 2017;81(2):026401.
Article
Google Scholar
Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica. 2017;4(1):139–52.
Article
Google Scholar
Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photonics. 2014;8(12):889–98.
Article
Google Scholar
Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater. 2020;5(8):604–20.
Article
Google Scholar
Hsiao HH, Chu CH, Tsai DP. Fundamentals and applications of metasurfaces. Small Methods. 2017;1(4):1600064.
Article
Google Scholar
Yoon G, Tanaka T, Zentgraf T, et al. Recent progress on metasurfaces: applications and fabrication. J Phys D Appl Phys. 2021;54(38):383002.
Luo X, Tsai D, Gu M, et al. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem Soc Rev. 2019;48(8):2458–94.
Article
Google Scholar
Lee S-Y, Kim K, Kim S-J, et al. Plasmonic meta-slit: shaping and controlling near-field focus. Optica. 2015;2(1):6–13.
Article
Google Scholar
Chen X, Zhang Y, Huang L, et al. Ultrathin metasurface laser beam shaper. Adv Optical Mat. 2014;2(10):978–82.
Article
Google Scholar
Sun S, Yang K-Y, Wang C-M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012;12(12):6223–9.
Article
Google Scholar
Walther B, Helgert C, Rockstuhl C, et al. Photonics: spatial and spectral light shaping with Metamaterials. Adv Mater. 2012;24(47):6251.
Article
Google Scholar
Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308–12.
Article
Google Scholar
Sun S, He Q, Xiao S, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11(5):426–31.
Article
Google Scholar
Chen K, Feng Y, Monticone F, et al. A reconfigurable active huygens' metalens. Adv Mater. 2017;29(17):1606422.
Article
Google Scholar
Cui TJ, Qi MQ, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 2014;3(10):e218.
Article
Google Scholar
Kamali SM, Arbabi E, Arbabi A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Physical Review X. 2017;7(4):041056.
Article
Google Scholar
Wang L, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms. Optica. 2016;3(12):1504–5.
Article
Google Scholar
Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys. 2015;78(2):024401.
Article
Google Scholar
Deng ZL, Deng J, Zhuang X, et al. Diatomic metasurface for vectorial holography. Nano Lett. 2018;18(5):2885–92.
Article
Google Scholar
Ding X, Monticone F, Zhang K, et al. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv Mater. 2015;27(7):1195–200.
Article
Google Scholar
Yu N, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012;12(12):6328–33.
Article
Google Scholar
Perez-Palomino G, Page JE, Arrebola M, et al. A design technique based on equivalent circuit and coupler theory for broadband linear to circular polarization converters in reflection or transmission mode. IEEE Trans Antennas Propag. 2018;66(5):2428–38.
Article
Google Scholar
Grady NK, Heyes JE, Chowdhury DR, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 2013;340(6138):1304–7.
Article
Google Scholar
Rodríguez-Fortuño FJ, Marino G, Ginzburg P, et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science. 2013;340(6130):328–30.
Article
Google Scholar
Pors A, Nielsen MG, Bernardin T, et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light: Sci App. 2014;3(8):e197.
Article
Google Scholar
Lin J, Mueller JB, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science. 2013;340(6130):331–4.
Article
Google Scholar
Wu L, Oudich M, Cao W, et al. Routing acoustic waves via a metamaterial with extreme anisotropy. Phys Rev Appl. 2019;12(4):044011.
Article
Google Scholar
Cao WK, Wu LT, Zhang C, et al. Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Sci Bull. 2019;64(12):808–13.
Article
Google Scholar
Li X, Xiao S, Cai B, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt Lett. 2012;37(23):4940–2.
Article
Google Scholar
Pors A, Nielsen MG, Eriksen RL, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 2013;13(2):829–34.
Article
Google Scholar
Shen K, Duan Y, Ju P, et al. On-chip optical levitation with a metalens in vacuum. Optica. 2021;8(11):1359–62.
Article
Google Scholar
Zhang C, Cao WK, Wu LT, et al. A reconfigurable active acoustic metalens. Appl Phys Lett. 2021;118(13):133502.
Article
Google Scholar
Yang W, Chen K, Zheng Y, et al. Angular-adaptive reconfigurable spin-locked Metasurface Retroreflector. Adv Sci. 2021;8(21):2100885.
Article
Google Scholar
Karvounis A, Gholipour B, MacDonald KF, et al. All-dielectric phase-change reconfigurable metasurface. Appl Phys Lett. 2016;109(5):051103.
Article
Google Scholar
Huang C, Yang J, Wu X, et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. Acs Photonics. 2017;5(5):1718–25.
Article
Google Scholar
Lu X, Dong B, Zhu H, et al. Two-channel vo2 memory meta-device for terahertz waves. Nanomaterials. 2021;11(12):3409.
Article
Google Scholar
Cao WK, Zhang C, Wu LT, et al. Tunable acoustic metasurface for three-dimensional wave manipulations. Phys Rev Appl. 2021;15(2):024026.
Article
Google Scholar
Dong B, Zhang C, Guo G, et al. BST-silicon hybrid terahertz meta-modulator for dual-stimuli-triggered opposite transmission amplitude control. Nanophotonics. 2022;11(9):2075–83.
Article
Google Scholar
Lee D, Gwak J, Badloe T, et al. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv. 2020;2(2):605–25.
Article
Google Scholar
Li Z, Lin P, Huang Y-W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv. 2021;7(5):eabe4458.
Article
Google Scholar
Hoffman DM, Girshick AR, Akeley K, et al. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis. 2008;8(3):33.
Article
Google Scholar
Liu S, Li Y, Zhou P, et al. A multi-plane optical see-through head mounted display design for augmented reality applications. J Soc Inf Disp. 2016;24(4):246–51.
Article
Google Scholar
Lee G-Y, Hong J-Y, Hwang S, et al. Metasurface eyepiece for augmented reality. Nat Commun. 2018;9(1):1–10.
Article
Google Scholar
Jang C, Bang K, Li G, et al. Holographic near-eye display with expanded eye-box. ACM Transact Graphics (TOG). 2018;37(6):1–14.
Article
Google Scholar
Lee S, Jo Y, Yoo D, et al. Tomographic near-eye displays. Nat Commun. 2019;10(1):1–10.
Google Scholar
Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt Lett. 1998;23(14):1081–3.
Article
Google Scholar
Liang H, Martins A, Borges B-HV, et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica. 2019;6(12):1461–70.
Article
Google Scholar
Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces. Adv Optic Mater. 2015;3(6):813–20.
Article
Google Scholar
Ni X, Ishii S, Kildishev AV, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci App. 2013;2(4):e72.
Article
Google Scholar
Akahane Y, Asano T, Song B-S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature. 2003;425(6961):944–7.
Article
Google Scholar
Liu W, Li Z, Cheng H, et al. Metasurface enabled wide-angle Fourier lens. Adv Mater. 2018;30(23):1706368.
Article
Google Scholar
Koshelev K, Kivshar Y. Dielectric resonant metaphotonics. Acs Photonics. 2020;8(1):102–12.
Article
Google Scholar
Yang B, Liu W, Li Z, et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces. Nano Lett. 2019;19(7):4221–8.
Article
Google Scholar
Porto J, Garcia-Vidal F, Pendry J. Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett. 1999;83(14):2845.
Article
Google Scholar
Li J, Chen Y, Hu Y, et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano. 2020;14(7):7892–8.
Article
Google Scholar
Chen Y, Duan X, Matuschek M, et al. Dynamic color displays using stepwise cavity resonators. Nano Lett. 2017;17(9):5555–60.
Article
Google Scholar
Yang Z, Chen Y, Zhou Y, et al. Microscopic interference full-color printing using grayscale-patterned Fabry–Perot resonance cavities. Adv Optical Mat. 2017;5(10):1700029.
Article
Google Scholar
Wang Y, Zheng M, Ruan Q, et al. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research. 2018;2018:8109054.
Verslegers L, Catrysse PB, Yu Z, et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 2009;9(1):235–8.
Article
Google Scholar
Kumar K, Duan H, Hegde RS, et al. Printing colour at the optical diffraction limit. Nat Nanotechnol. 2012;7(9):557–61.
Article
Google Scholar
Segal N, Keren-Zur S, Hendler N, et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics. 2015;9(3):180–4.
Article
Google Scholar
Huang X, Lai Y, Hang ZH, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 2011;10(8):582–6.
Article
Google Scholar
Yang J, Ghimire I, Wu PC, et al. Photonic crystal fiber metalens. Nanophotonics. 2019;8(3):443–9.
Article
Google Scholar
Chang-Hasnain CJ, Yang W. High-contrast gratings for integrated optoelectronics. Adv Opt Photon. 2012;4(3):379–440.
Article
Google Scholar
Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements. Science. 2014;345(6194):298–302.
Article
Google Scholar
Huang MC, Zhou Y, Chang-Hasnain CJ. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat Photonics. 2007;1(2):119–22.
Article
Google Scholar
Zhou H, Chen L, Shen F, et al. Broadband achromatic metalens in the midinfrared range. Phys Rev Appl. 2019;11(2):024066.
Article
Google Scholar
Khorasaninejad M, Capasso F. Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 2015;15(10):6709–15.
Article
Google Scholar
Khorasaninejad M, Crozier KB. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat Commun. 2014;5(1):1–6.
Article
Google Scholar
Khorasaninejad M, Zhu AY, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 2016;16(11):7229–34.
Article
Google Scholar
Devlin RC, Khorasaninejad M, Chen WT, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci. 2016;113(38):10473–8.
Article
Google Scholar
Maguid E, Yulevich I, Yannai M, et al. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light: Sci App. 2017;6(8):e17027-e.
Article
Google Scholar
Mueller JB, Rubin NA, Devlin RC, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett. 2017;118(11):113901.
Article
Google Scholar
Pancharatnam S. Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences-section a, 1956. Abstract 6: Springer. p. 398–417.
Berry MV. The adiabatic phase and Pancharatnam's phase for polarized light. J Mod Opt. 1987;34(11):1401–7.
Article
MathSciNet
MATH
Google Scholar
Xie X, Pu M, Jin J, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys Rev Lett. 2021;126(18):183902.
Article
Google Scholar
Liu W, Li Z, Cheng H, et al. Dielectric resonance-based optical metasurfaces: from fundamentals to applications. Iscience. 2020;23(12):101868.
Article
Google Scholar
Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt. 1966;5(6):967–9.
Article
Google Scholar
Lohmann AW, Paris DP. Binary Fraunhofer holograms, generated by computer. Appl Opt. 1967;6(10):1739–48.
Article
Google Scholar
Min C, Liu J, Lei T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev. 2016;10(6):978–85.
Article
Google Scholar
Zhang K, Wang Y, Burokur SN, et al. Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings. IEEE Transact Microwave Theory Techn. 2021;70(1):200–9.
Article
Google Scholar
Lin J, Genevet P, Kats MA, et al. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 2013;13(9):4269–74.
Article
Google Scholar
Xie Z, Lei T, Si G, et al., Min C, Liu J, et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. Acs Photonics. 2017;4(9):2158–64.
Article
Google Scholar
Poon TC. Digital holography and three-dimensional display: principles and applications: Springer Science & Business Media; 2006.
Book
Google Scholar
Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3(1):1–6.
Article
Google Scholar
Wang W, Guo Z, Li R, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens. Photon Res. 2015;3(3):68–71.
Article
MathSciNet
Google Scholar
Luo X. Plasmonic metalens for nanofabrication. Natl Sci Rev. 2018;5(2):137–8.
Article
Google Scholar
Williams C, Montelongo Y, Wilkinson TD. Plasmonic Metalens for narrowband dual-focus imaging. Adv Optical Mat. 2017;5(24):1700811.
Article
Google Scholar
Chen X, Huang L, Mühlenbernd H, et al. Reversible three-dimensional focusing of visible light with ultrathin Plasmonic flat lens. Adv Optical Mat. 2013;1(7):517–21.
Article
Google Scholar
Schlickriede C, Waterman N, Reineke B, et al. Imaging through nonlinear metalens using second harmonic generation. Adv Mater. 2018;30(8):1703843.
Article
Google Scholar
Francesco A, Genevet P, Kat MA, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012;12(9):4932–6.
Article
Google Scholar
Avayu O, Almeida E, Prior Y, et al. Composite functional metasurfaces for multispectral achromatic optics. Nat Commun. 2017;8(1):1–7.
Article
Google Scholar
Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11(1):23–36.
Article
Google Scholar
Kuznetsov AI, Miroshnichenko AE, Brongersma ML, et al. Optically resonant dielectric nanostructures. Science. 2016;354(6314):aag2472.
Article
Google Scholar
Cheng J, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength. Sci Rep. 2016;6(1):1–10.
Article
Google Scholar
Huang K, Deng J, Leong HS, et al. Ultraviolet Metasurfaces of≈ 80% efficiency with antiferromagnetic resonances for optical Vectorial anti-counterfeiting. Laser Photonics Rev. 2019;13(5):1800289.
Article
Google Scholar
Zhang C, Divitt S, Fan Q, et al. Low-loss metasurface optics down to the deep ultraviolet region. Light: Sci App. 2020;9(1):1–10.
Article
Google Scholar
Hemmatyar O, Abdollahramezani S, Kiarashinejad Y, et al. Full color generation with Fano-type resonant hfo 2 nanopillars designed by a deep-learning approach. Nanoscale. 2019;11(44):21266–74.
Article
Google Scholar
Guo L, Hu Z, Wan R, et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing. Nanophotonics. 2019;8(1):171–80.
Article
Google Scholar
Guo L, Xu S, Wan R, et al. Design of aluminum nitride metalens in the ultraviolet spectrum. J Nanophoton. 2018;12(4):043513.
Google Scholar
Khorasaninejad M, Chen WT, Devlin RC, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–4.
Article
Google Scholar
Chen WT, Zhu AY, Sisler J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun. 2019;10(1):1–7.
Google Scholar
Chen WT, Zhu AY, Sanjeev V, et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13(3):220–6.
Article
Google Scholar
Groever B, Chen WT, Capasso F. Meta-lens doublet in the visible region. Nano Lett. 2017;17(8):4902–7.
Article
Google Scholar
Khorasaninejad M, Shi Z, Zhu AY, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017;17(3):1819–24.
Article
Google Scholar
Chen WT, Zhu AY, Khorasaninejad M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Lett. 2017;17(5):3188–94.
Article
Google Scholar
Poulton CV, Byrd MJ, Raval M, et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt Lett. 2017;42(1):21–4.
Article
Google Scholar
Fan ZB, Shao ZK, Xie MY, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys Rev Appl. 2018;10(1):014005.
Article
Google Scholar
Ye M, Ray V, Wu D, et al. Metalens with artificial focus pattern. IEEE Photon Technol Lett. 2020;32(5):251–4.
Article
Google Scholar
Park CS, Koirala I, Gao S, et al. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks. Opt Express. 2019;27(2):667–79.
Article
Google Scholar
Liang H, Lin Q, Xie X, et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett. 2018;18(7):4460–6.
Article
Google Scholar
Sell D, Yang J, Doshay S, et al. Visible light metasurfaces based on single-crystal silicon. Acs Photonics. 2016;3(10):1919–25.
Article
Google Scholar
Zhou Z, Li J, Su R, et al. Efficient silicon metasurfaces for visible light. Acs Photonics. 2017;4(3):544–51.
Article
Google Scholar
Emani NK, Khaidarov E, Paniagua-Domínguez R, et al. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl Phys Lett. 2017;111(22):221101.
Article
Google Scholar
Chen BH, Wu PC, Su V-C, et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 2017;17(10):6345–52.
Article
Google Scholar
Wang S, Wu PC, Su V-C, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13(3):227–32.
Article
Google Scholar
Grinblat G, Li Y, Nielsen MP, et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano. 2017;11(1):953–60.
Article
Google Scholar
Wang A, Chen Z, Dan Y. Planar metalenses in the mid-infrared. AIP Adv. 2019;9(8):085327.
Article
Google Scholar
Dong Z, Ho J, Yu YF, et al. Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space. Nano Lett. 2017;17(12):7620–8.
Article
Google Scholar
Shrestha S, Overvig AC, Lu M, et al. Broadband achromatic dielectric metalenses. Light: Sci App. 2018;7(1):1–11.
Article
Google Scholar
Li J, Wang Y, Liu S, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Largest aperture metalens of high numerical aperture and polarization independence for long-wavelength infrared imaging. Opt Express. 2022;30(16):28882–91.
Article
Google Scholar
Shan X, Li Z, Li J, et al. Broadband continuous achromatic and super-dispersive metalens in near-infrared band. J Appl Phys. 2021;131(2):023103.
Article
Google Scholar
Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10(11):937–43.
Article
Google Scholar
Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat Commun. 2018;9(1):1–9.
Google Scholar
Shalaginov MY, An S, Yang F, et al. Single-element diffraction-limited fisheye metalens. Nano Lett. 2020;20(10):7429–37.
Article
Google Scholar
Arbabi A, Horie Y, Ball AJ, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun. 2015;6(1):1–6.
Article
Google Scholar
Majka M, Majka TM. Healthy light source; 2013.
Google Scholar
Rodziewicz T, Rajfur M, Teneta J, et al. Modelling and analysis of the influence of solar spectrum on the efficiency of photovoltaic modules. Energy Rep. 2021;7:565–74.
Article
Google Scholar
Balli F, Sultan M, Lami SK, et al. A hybrid achromatic metalens. Nat Commun. 2020;11(1):1–8.
Article
Google Scholar
Yoon G, Kim K, Kim S-U, et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano. 2021;15(1):698–706.
Article
Google Scholar
Li B, Piyawattanametha W, Qiu Z. Metalens-based miniaturized optical systems. Micromachines. 2019;10(5):310.
Article
Google Scholar
She A, Zhang S, Shian S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci Adv. 2018;4(2):eaap9957.
Article
Google Scholar
Bayati E, Zhan A, Colburn S, et al. Role of refractive index in metalens performance. Appl Opt. 2019;58(6):1460–6.
Article
Google Scholar
Wu Z, Dong F, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light. Acs Photonics. 2019;7(1):180–9.
Article
Google Scholar
Chen C, Song W, Chen JW, et al. Spectral tomographic imaging with aplanatic metalens. Light: Sci App. 2019;8(1):1–8.
Article
Google Scholar
Fan ZB, Qiu HY, Zhang HL, et al. A broadband achromatic metalens array for integral imaging in the visible. Light: Sci Appl. 2019;8(1):1–10.
Article
Google Scholar
Uenoyama S, Ota R. 40× 40 Metalens Array for improved silicon photomultiplier performance. ACS Photonics. 2021;8(6):1548–55.
Article
Google Scholar
Chang WH, Lin JH, Kuan CH, et al. Generation of concentric space-variant linear polarized light by dielectric metalens. Nano Lett. 2020;21(1):562–8.
Article
Google Scholar
Kanwal S, Wen J, Yu B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum. Nanomaterials. 2020;10(3):490.
Article
Google Scholar
Ali F, Aksu S. A hybrid broadband metalens operating at ultraviolet frequencies. Sci Rep. 2021;11(1):1–8.
Google Scholar
Kanwal S, Wen J, Yu B, et al. Polarization insensitive, broadband, near diffraction-limited metalens in ultraviolet region. Nanomaterials. 2020;10(8):1439.
Article
Google Scholar
Hu M, Wei Y, Cai H, et al. Polarization-insensitive and achromatic metalens at ultraviolet wavelengths. J Nanophoton. 2019;13(3):036015.
Article
Google Scholar
Liu M, Xu N, Wang B, et al. Polarization independent and broadband achromatic metalens in ultraviolet spectrum. Opt Commun. 2021;497:127182.
Article
Google Scholar
Banerji S, Sensale-Rodriguez B. Inverse designed achromatic flat lens operating in the ultraviolet. OSA Continuum. 2020;3(7):1917–29.
Article
Google Scholar
Kenney M, Grant J, Hao D, et al. Large area metasurface lenses in the NIR region. In: Modeling aspects in optical metrology VII: SPIE; 2019. p. 56–66.
Google Scholar
Phan T, Sell D, Wang EW, et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Sci App. 2019;8(1):1–9.
Article
Google Scholar
Li Q, Wright JB, Chow WW, et al. Single-mode GaN nanowire lasers. Opt Express. 2012;20(16):17873–9.
Article
Google Scholar
Li C, Wright JB, Liu S, et al. Nonpolar InGaN/GaN core–shell single nanowire lasers. Nano Lett. 2017;17(2):1049–55.
Article
Google Scholar
Zhao D, Lin Z, Zhu W, et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics. 2021;10(9):2283–2308.
Byrnes SJ, Lenef A, Aieta F, et al. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt Express. 2016;24(5):5110–24.
Article
Google Scholar
Lin Z, Groever B, Capasso F, et al. Topology-optimized multilayered metaoptics. Phys Rev Appl. 2018;9(4):044030.
Article
Google Scholar
Wang S, Wu PC, Su V-C, et al. Broadband achromatic optical metasurface devices. Nat Commun. 2017;8(1):1–9.
Google Scholar
Hsiao HH, Chen YH, Lin RJ, et al. Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation. Adv Optical Mat. 2018;6(12):1800031.
Article
Google Scholar
Wang Y, Chen Q, Yang W, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat Commun. 2021;12(1):1–7.
Google Scholar
Ndao A, Hsu L, Ha J, et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nat Commun. 2020;11(1):1–6.
Article
Google Scholar
Arbabi E, Arbabi A, Kamali SM, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica. 2017;4(6):625–32.
Article
Google Scholar
She A, Zhang S, Shian S, et al. Large area metalenses: design, characterization, and mass manufacturing. Opt Express. 2018;26(2):1573–85.
Article
Google Scholar
Arbabi A, Arbabi E, Kamali SM, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun. 2016;7(1):1–9.
Article
Google Scholar
Lassalle E, Mass TW, Eschimese D, et al. Imaging properties of large field-of-view quadratic metalenses and their applications to fingerprint detection. Acs Photonics. 2021;8(5):1457–68.
Article
Google Scholar
Monticone F, Valagiannopoulos CA, Alù A. Parity-time symmetric nonlocal metasurfaces: all-angle negative refraction and volumetric imaging. Phys Rev X. 2016;6(4):041018.
Google Scholar
Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966.
Article
Google Scholar
Xu T, Agrawal A, Abashin M, et al. All-angle negative refraction and active flat lensing of ultraviolet light. Nature. 2013;497(7450):470–4.
Article
Google Scholar
Kaina N, Lemoult F, Fink M, et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature. 2015;525(7567):77–81.
Article
Google Scholar
Estakhri NM, Neder V, Knight MW, et al. Visible light, wide-angle graded metasurface for back reflection. Acs Photonics. 2017;4(2):228–35.
Article
Google Scholar
Aieta F, Genevet P, Kats M, et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt Express. 2013;21(25):31530–9.
Article
Google Scholar
Martins A, Li K, Li J, et al. On metalenses with arbitrarily wide field of view. Acs Photonics. 2020;7(8):2073–9.
Article
Google Scholar
Chen C, Chen P, Xi J, et al. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv. 2020;10(11):115213.
Article
Google Scholar
Engelberg J, Zhou C, Mazurski N, et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics. 2020;9(2):361–70.
Article
Google Scholar
Pu M, Li X, Guo Y, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt Express. 2017;25(25):31471–7.
Article
Google Scholar
Park JS, Zhang S, She A, et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 2019;19(12):8673–82.
Article
Google Scholar
Zhang S, Kim MH, Aieta F, et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt Express. 2016;24(16):18024–34.
Article
Google Scholar
Roy T, Zhang S, Jung IW, et al. Dynamic metasurface lens based on MEMS technology. Apl Photonics. 2018;3(2):021302.
Article
Google Scholar
Hu T, Tseng C-K, Fu YH, et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt Express. 2018;26(15):19548–54.
Article
Google Scholar
Li N, Fu YH, Dong Y, et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics. 2019;8(10):1855–61.
Article
Google Scholar
Xu Z, Dong Y, Fu YH, et al. Embedded dielectric metasurface based subtractive color filter on a 300mm glass wafer. In: 2019 conference on lasers and electro-optics (CLEO): IEEE; 2019. p. 1–2.
Google Scholar
Hu T, Zhong Q, Li N, et al. CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging. Nanophotonics. 2020;9(4):823–30.
Article
Google Scholar
Shalaginov MY, An S, Zhang Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat Commun. 2021;12(1):1–8.
Article
Google Scholar
Cui Y, Zheng G, Chen M, et al. Reconfigurable continuous-zoom metalens in visible band. Chin Opt Lett. 2019;17(11):111603.
Article
Google Scholar
Afridi A, Canet-Ferrer J, Philippet L, et al. Electrically driven varifocal silicon metalens. Acs Photonics. 2018;5(11):4497–503.
Article
Google Scholar
He Q, Sun S, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications. Research. 2019;2019:1849272.
Arbabi E, Arbabi A, Kamali SM, et al. MEMS-tunable dielectric metasurface lens. Nat Commun. 2018;9(1):1–9.
Article
Google Scholar
Papaioannou M, Plum E, Rogers ET, et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface. Light: Sci App. 2018;7(3):17157.
Article
Google Scholar
Zhong JW, An N, Yi NB, et al. Broadband and tunable-focus flat lens with dielectric Metasurface. Plasmonics. 2016;11(2):537–41.
Article
Google Scholar
Ahmed R, Butt H. Strain-multiplex Metalens Array for tunable focusing and imaging. Adv Sci. 2021;8(4):2003394.
Article
Google Scholar
Elsawy MM, Gourdin A, Binois M, et al. Multiobjective statistical learning optimization of RGB metalens. ACS Photon. 2021;8(8):2498–508.
Article
Google Scholar
Yao K, Unni R, Zheng Y. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics. 2019;8(3):339–66.
Article
Google Scholar
Zhu M, Abdollahramezani S, Hemmatyar O, et al. Linear and nonlinear focusing using reconfigurable all-dielectric Metalens based on phase-change materials. In: Laser science: Optical Society of America; 2020. p. JW6B.
Google Scholar
Schlickriede C, Kruk SS, Wang L, et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett. 2020;20(6):4370–6.
Article
Google Scholar
Chen J, Wang K, Long H, et al. Tungsten disulfide–gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region. Nano Lett. 2018;18(2):1344–50.
Article
Google Scholar
Li L, Liu Z, Ren X, et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science. 2020;368(6498):1487–90.
Article
Google Scholar
Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat Commun. 2016;7(1):1–7.
Article
Google Scholar
Gao Y, Fan Y, Wang Y, et al. Nonlinear holographic all-dielectric metasurfaces. Nano Lett. 2018;18(12):8054–61.
Article
Google Scholar
Andrén D, Martínez-Llinàs J, Tassin P, et al. Large-scale metasurfaces made by an exposed resist. ACS Photon. 2020;7(4):885–92.
Article
Google Scholar
Yoon G, Kim K, Huh D, et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat Commun. 2020;11(1):1–10.
Article
Google Scholar
Saha SK, Wang D, Nguyen VH, et al. Scalable submicrometer additive manufacturing. Science. 2019;366(6461):105–9.
Article
Google Scholar
Guo LJ. Nanoimprint lithography: methods and material requirements. Adv Mater. 2007;19(4):495–513.
Article
Google Scholar
Liu Z, Liu N, Schroers J. Nanofabrication through molding. Prog Mater Sci. 2022;125:100891.
Article
Google Scholar
Guo M, Qu Z, Min F, et al. Advanced unconventional techniques for sub-100 nm nanopatterning. InfoMat. 2022;4(8):e12323.
Sreenivasan S. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst Nanoeng. 2017;3(1):1–19.
Article
Google Scholar
Stewart MD, Johnson SC, Sreenivasan SV, et al. Nanofabrication with step and flash imprint lithography. J Micro/Nanolithography MEMS MOEMS. 2005;4(1):011002.
Article
Google Scholar
Ganesan R, Dumond J, Saifullah MS, et al. Direct patterning of TiO2 using step-and-flash imprint lithography. ACS Nano. 2012;6(2):1494–502.
Article
Google Scholar