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Abstract 

Single-molecule localization microscopy (SMLM) surpasses the diffraction limit 
by randomly switching fluorophores between fluorescent and dark states, precisely 
pinpointing the resulted isolated emission patterns, thereby reconstructing the super-
resolution images based on the accumulated locations of thousands to millions of sin-
gle molecules. This technique achieves a ten-fold improvement in resolution, unveiling 
the intricate details of molecular activities and structures in cells and tissues. Multicolor 
SMLM extends this capability by imaging distinct protein species labeled with various 
fluorescent probes, providing insights into structural intricacies and spatial relation-
ships among different targets. This review explores recent advancements in multicolor 
SMLM, evaluates the strengths and limitations of each variant, and discusses the future 
prospects.
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Introduction
 Fluorescence microscopy is a powerful tool in biological research due to its live-cell 
compatibility and labeling specificity, allowing researchers to examine the molecular dis-
tribution and organelle morphology and dynamics in a diverse range of biological model 
organisms. However, conventional far-field fluorescence microscopy is constrained by 
the diffraction limit of light with a spatial resolution of 200 nm laterally and 500 nm axi-
ally, making it challenging to resolve cellular and tissue constituents at the nanoscale. 
Single-molecule localization microscopy (SMLM), typically including fluorescence pho-
toactivation localization microscopy (PALM/fPALM) [1, 2], stochastic optical recon-
struction microscopy (STORM) [3], direct STORM (dSTORM) [4, 5], DNA points 
accumulation for imaging in nanoscale topography (DNA-PAINT) [6, 7], and minimal 
photon fluxes (MINFLUX) [8, 9], has overcome this barrier by randomly activating a 
small subset of molecules to fluoresce at any given time, enabling the precise localization 
of their isolated emission patterns and the super-resolution reconstruction through the 
accumulation of locations of thousands to millions of single molecules (Fig. 1A) [10–12]. 
This groundbreaking approach can enhance resolution by a factor of ten, revealing the 
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complex details of molecular activities and structures in cells and tissues. It also has the 
potential to advance research in disease mechanisms, diagnostics, and treatments, such 
as cancers [13–16], Alzheimer’s disease [17–19], and Parkinson’s disease [20–22].

As an extension of SMLM, multicolor SMLM images distinct protein species inside 
the specimen labeled with various fluorescent probes, aiming to not only elucidate the 

Fig. 1  Concept of multicolor SMLM. A Schematic of SMLM. B Simultaneous multicolor SMLM including 
ratiometric SMLM, spectroscopic SMLM, point spread function (PSF) engineering SMLM, and excitation 
modulation SMLM. The green and red dashed boxes show the excitation and emission paths, respectively. 
The dark boxes show typical emission patterns of single molecules, partly reproduced with permission from 
Ref. 97, copyright 2016 Springer Nature. SLM: spatial light modulator



Page 3 of 27Chen et al. PhotoniX            (2024) 5:29 	

structural intricacies of individual targets but also uncover the spatial relationships and 
interactions among different fluorescently tagged targets [23–25]. While this technique 
has garnered significant attention for exploring organelle interactions, biologists will 
find it overwhelming to navigate among its numerous variations. This review exclusively 
focuses on the recent advancements of multicolor SMLM, analyzing the strengths and 
limitations of each variant while also discussing the future prospects.

Approaches in multicolor SMLM
Based on the methodology of image acquisition, current multicolor SMLM approaches 
can be categorized into two strategies: sequential acquisition and simultaneous acqui-
sition. Sequential acquisition involves capturing one-color data at a time through 
sequential imaging of each structure, while simultaneous acquisition involves capturing 
multicolor data simultaneously and distinguishing them through post-processing algo-
rithms (Fig. 1B).

Sequential multicolor SMLM
Current sequential multicolor SMLM techniques mainly include sequential multicolor 
SMLM with multiple fluorophores, sequential multicolor SMLM with a single fluoro-
phore, and exchange-PAINT.

Sequential multicolor SMLM with multiple fluorophores

The most straightforward approach to achieve sequential multicolor SMLM involves 
labeling different protein species with dyes featuring well-separated excitation spectra 
and sequentially imaging them using different excitation lasers (Fig. 2A). This method 
was initially proposed by Bock et al. [26] for SMLM in 2007, where the fluorescent pro-
tein rsFastLime and the organic fluorophore Cy5 were excited at wavelengths of 488 nm 
and 633  nm, respectively, allowing for two-color imaging of microtubular network in 
fixed PtK2 cells (Fig. 2B). The same year, Shroff et al. [27] performed two-color super-
resolution imaging of various pairs of proteins assembled in adhesion complexes and 
discovered that proteins appearing to be colocalized in conventional microscopy were 
actually resolved as distinct interlocking nano-aggregates in super-resolution micros-
copy. Subsequently, this technique gained widespread adoption and facilitated sig-
nificant biological discoveries through unveiling the spatial organization of multiple 
biomolecules such as the eight-fold symmetry of the gp210 proteins in nuclear pore 
complex (NPC) (Fig. 2C) [28], the process of determining the kinetics of target recogni-
tion mediated by in vivo base pairing (Fig. 2D) [29], and the type III secretion machine in 
real-time within S. Typhimurium bacteria (Fig. 2E) [30]. This method is relatively easy to 
implement and exhibits minimal crosstalk between different channels. However, the use 
of well-separated excitation spectra results in well-separated emission spectra, leading 
to substantial chromatic aberrations that necessitate precise registration between differ-
ent channels to maintain nanoscale resolution [31]. Furthermore, fluorophores outside 
the far-red channel may not perform optimally in terms of duty cycle (the ratio of the 
time the fluorophore stays in the fluorescent state to the total time of a complete cycle 
including both the fluorescent and dark states) and emitted photons per emission under 
specific imaging buffer conditions, potentially compromising localization precision or 
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density. To mitigate these challenges, an alternative strategy of sequential multicolor 
SMLM using fewer or even a single fluorophore (Fig. 3A) has been proposed.

Sequential multicolor SMLM with a single fluorophore

Multicolor STORM utilizing photo-switchable fluorescent probes was proposed by Bates 
et  al. [32] in 2007, each of which consists of a ‘reporter’ that can be toggled between 
fluorescent and dark states and an ‘activator’ that triggers the activation of the reporter 
(Fig. 3B). By linking the ‘reporter’ Cy5 to three different ‘activators’ – AF405, Cy3, and 
Cy2 – distinct activation spectra were created, enabling sequential color-specific activa-
tion to realize three-color super-resolution imaging. Subsequently, in 2010 Dani et  al. 

Fig. 2  Sequential multicolor SMLM with multiple fluorophores. A Schematic of sequential multicolor SMLM 
with multiple fluorophores. B Image of microtubular network in PtK2 cells labeled with rsFastLime (green) 
and Cy5 (red). Reproduced with permission from Ref. 26. Copyright 2007 Springer Berlin Heidelberg. C Image 
of NPCs using ATTO520 (green) and AF647 (magenta) labeled secondary antibodies directed against an 
epitope of gp210 on the luminal side, with the eight-fold symmetrical ring structure of gp210 surrounding 
the NPC and N-acetyl glucosamine-containing nucleoporins. Reproduced with permission from Ref. 28. 
Copyright 2012 Company of Biologists Ltd. D Image of SgrS (red) and ptsG mRNA (green) labeled by smFISH, 
showing the kinetic properties of SgrS regulation of ptsG mRNA. Reproduced with permission from Ref. 29. 
Copyright 2015 American Association for the Advancement of Science. E Image of fixed S. Typhimurium 
expressing mEos3.2-SpaO (green) stained with an AF647-labeled antibody directed to an epitope tag 
present in the type III secretion needle tip protein SipD (magenta). Reproduced with permission from Ref. 30. 
Copyright 2017 the National Academy of Sciences of the United States of America



Page 5 of 27Chen et al. PhotoniX            (2024) 5:29 	

[33] achieved three-color three-dimensional (3D) imaging using the same ‘activators’ but 
a different ‘reporter’, AF647, allowing the visualization of presynaptic Bassoon and post-
synaptic Homer1 in the main olfactory bulb of the mouse (Fig. 3C). In 2012, Bates et al. 

Fig. 3  Sequential multicolor SMLM with a single fluorophore. A Schematic of sequential multicolor 
SMLM with a single fluorophore. B Schematic of sequential multicolor SMLM based on photo-switchable 
fluorescent probes constructed from activator-reporter pairs. C Image of presynaptic Bassoon (red) and 
postsynaptic Homer1 (green) labeled with Cy3-AF647 and AF405-AF647, respectively, in the glomerular 
layer of the main olfactory bulb in the mouse (top), side-view image (bottom left) with the trans-synaptic 
axis rotated into the viewing plane, and face-view image (bottom right) with transsynaptic axis rotated 
perpendicular to the viewing plane. Reproduced with permission from Ref. 33. Copyright 2010 Cell Press. 
D Schematic of sequential multicolor SMLM based on fluorescence quenching, including labeling, imaging, 
photo-destruction, relabeling, etc. E Image of mitochondrial outer membrane protein TOM20 (yellow), 
mitochondrial inner membrane protein ATP-synthase (cyan), lysosomal protein Lamp2 (red), total tubulin 
(green), and acetylated tubulin (magenta) in BS-C-1 cells, all labeled with AF647, showing that the acetylated 
tubulin colocalizes with total tubulin and ATP-synthase colocalizes with TOM20 while Lamp2 does not 
colocalize with either total tubulin or TOM20. Reproduced with permission from Ref. 35. Copyright 2014 
Public Library of Science. F Image of clathrin (yellow), α-tubulin (green), actin (orange), and EGFR (blue) in 
HeLa cells, all labeled with AF647. Reproduced with permission from Ref. 36. Copyright 2015 Public Library of 
Science
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[34] utilized the same ‘activators’ along with two ‘reporters’, AF647 and AF750, thereby 
creating six fluorescent probe pairs for six-color imaging. This method not only reduces 
the number of fluorophores required for multicolor SMLM but also enables the flexible 
selection of infrared dyes with superior blinking capabilities, facilitating the acquisition 
of high-quality data in each activated channel. However, it suffers from high crosstalk of 
10% – 20% due to non-specific activation by the laser.

To lower the crosstalk and simplify the imaging methodology, multicolor SMLM 
through sequential labeling was developed by Tam et  al. [35] in 2014, utilizing a sin-
gle fluorophore, AF647, to label a variety of primary antibodies that target proteins of 
interest. This approach involves labeling the first target, acquiring single-molecule data, 
quenching the specimen with NaBH4, and then proceeding to label the second target, 
and so forth (Fig. 3D). A key challenge faced by this technique is the precise relocation of 
the same region of interest after each round of labeling. To overcome this obstacle, the 
authors initially implemented a ‘virtual grid’ for coarse alignment, recording the coor-
dinates of the imaged region and two reference points to calculate the rotation angle 
between imaging sessions, and then compared images containing fluorescent beads from 
the two imaging sessions for fine alignment. The authors achieved five-color imaging in 
BS-C-1 cells, targeting proteins such as mitochondrial outer membrane protein TOM20, 
mitochondrial inner membrane protein ATP-synthase, lysosomal protein Lamp2, total 
tubulin, and acetylated tubulin (Fig. 3E). However, the process of labeling with primary 
and secondary antibodies can lead to an increased linkage error. To reduce this error, 
in 2015 Valley et al. [36] proposed a method that labeled specimens with AF647 using 
directly-conjugated primary antibodies and utilized the bright-field image as a reference 
for pre-imaging alignment across different imaging sessions. In this study, the authors 
found that only 85% of AF647 was permanently quenched by NaBH4 and thus imple-
mented a combination of photobleaching and NaBH4 quenching, effectively reducing 
crosstalk to less than 0.5%. This technique enables the imaging of clathrin, α-tubulin, 
actin, and epidermal growth factor receptor (EGFR) in HeLa cells (Fig. 3F). This sequen-
tial labeling method eliminates chromatic aberrations, avoids the incompatibility of 
different fluorophores in the same imaging buffer, reduces instrumentation costs by 
requiring only one excitation laser and one activation laser, and lowers crosstalk through 
the reliable performance of NaBH4 in quenching fluorescence. However, the process 
needs the removal of the sample for quenching and labeling, followed by its return to the 
original position multiple times, which relies heavily on the expertise of the experimen-
talist and can be time-consuming and labor-intensive. Automation devices incorporat-
ing motor-controlled and piezo stages along with microfluidics technology have been 
implemented to simplify buffer exchange, relabeling, and washing steps, notably stream-
lining sample preparation and imaging procedures [37, 38].

Exchange‑PAINT

Exchange-PAINT is presented by Jungmann et al. [7] in 2014 based on DNA-PAINT [6], 
which leverages the programmability and specificity of DNA hybridization to design a 
docking strand that connects to the target and a fluorescently labeled imaging strand, and 
generates the blinking data from the binding and dissociation of these strands. By sequen-
tially exchanging the buffers of imaging strands to bind to different targets (Fig. 4A), the 
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authors accomplished the first ten-color super-resolution imaging on synthetic DNA struc-
tures with sub-10-nm resolution. This technique theoretically enables unlimited multi-
plexing but is hindered by prolonged acquisition time. Increasing the concentration of the 
imaging strand can enhance the binding frequency and expedite the imaging process, but 

Fig. 4  DNA-PAINT and its variants. A Schematic of Exchange-PAINT. B Schematic of FRET based DNA-PAINT. 
C Schematic of caged DNA-PAINT. D Schematic of fluorogenic DNA-PAINT. E Effect of ethylene carbonate, 
repeat sequence, and spacer. Reproduced with permission from Ref. 46. Copyright 2020 Springer Nature. 
F Image of a mixed synapse containing VGlut1 (yellow) as a neurotransmitter transporter, Bassoon (red) 
as presynaptic, and Gephyrin (green) as postsynaptic marker. Reproduced with permission from Ref. 48. 
Copyright 2024 Cell Press
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leads to a higher number of unbound strands, which contributes to a higher background 
level.

To solve this problem, in 2017 Auer et al. [39] and Lee et al. [40] independently proposed 
probes based on Förster resonance energy transfer (FRET), where the fluorescence of the 
acceptor strand was detected only when it bound to an excited donor (Fig. 4B). In 2020, 
Jang et al. [41] developed photoactivatable probes using reductive caging in DNA-PAINT, 
which employed chemically reductive imager strands and UV-TIRF (total internal reflec-
tion fluorescence) illumination to activate the imager strands only in close proximity to the 
coverslip surface (Fig. 4C). In 2021, Geertsema et al. [42] proposed to employ left-handed 
DNA instead of conventional right-handed DNA, as left-handed DNA does not hybridize 
with natural right-handed DNA, minimizing interference from cellular DNA during the 
hybridization between the target and probe. In 2022, Chung et al. [43] developed fluoro-
genic DNA-PAINT utilizing self-quenching single-stranded probes conjugated with a 
fluorophore and quencher at their terminals, which are strongly quenched in solution but 
become bright upon binding to the docking strand (Fig. 4D). All these methods can effec-
tively reduce the background without affecting the imaging speed.

Another strategy to accelerate imaging involves increasing the association rate among 
individual imaging chains. In 2019, Schueder et al. [44] enhanced the hybridization kinet-
ics in DNA-PAINT by optimizing the sequence and adjusting the concentration of MgCl2 
in the solution, achieving a ten-fold improvement in acquisition speed. In 2020, Strauss 
et  al. [45] employed overlapping repetitive sequences to achieve an impressive 100-fold 
acceleration, reducing the imaging time to just 30 min for six targets. Similarly, Civitci et al. 
[46] improved the binding rate of the imaging strand by incorporating ethylene carbonate 
into the buffer, adding repeat sequences to the docking strand, and introducing a spacer 
between the docking strand and the affinity agent (Fig. 4E), and achieved multiplexed imag-
ing in 2–5 min for each target. In 2021, Clowsley et al. [47] introduced a technique known 
as repeat DNA-PAINT, which involves the incorporation of multi-repeat docking motifs to 
enhance the imager binding sites, significantly decreasing the background while increasing 
the acquisition speed. The above improvements optimize the acquisition speed of DNA-
PAINT, but the optimized sequence constrains its multiplexing capability to a limited tar-
get. In 2024, Unterauer et al. [48] proposed secondary label-based unlimited multiplexed 
DNA-PAINT (SUM-PAINT), an infinite multiplexing based on secondary labeling, which 
enables the imaging of 30 proteins in neurons with a resolution higher than 15 nm. With 
this technique, the authors unveiled three distinct synaptic subtypes within hippocampal 
neurons: canonical glutamatergic excitatory and GABAergic inhibitory synapses, and a 
mixed synaptic subtype (Fig. 4F).

Despite the incompatibilities of DNA-PAINT-based approaches with live-cell imaging, 
the numerous inventions facilitate highly-multiplexed, low-crosstalk, and robust investi-
gations of a wide range of protein species in their native and complex cellular and tissue 
context.

Simultaneous multicolor SMLM
Current simultaneous multicolor SMLM techniques mainly consist of ratiometric 
SMLM, spectroscopic SMLM, PSF engineering SMLM, and excitation modulation 
SMLM.
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Ratiometric SMLM

Different fluorophores, even when imaged simultaneously in SMLM, can be distin-
guished based on their unique emission spectra. The idea of ratiometric SMLM was ini-
tially proposed by Schönle et al. [49] in 2007, where multiple fluorophores with closely 
overlapping spectra were excited using a single laser and differentiated based on the 
transmission-reflection ratio of the emission signal after passing through a dichroic mir-
ror (Fig. 5A). This approach was later validated by Bossi et al. [50] in 2008, where the 
microtubules and keratin network in PtK2 cells were imaged with secondary antibod-
ies labeled with SRA552-maleimide and SRA577-NHSS, respectively, achieving a lateral 
resolution of 10–15 nm with a crosstalk of approximately 5%.

AF647, known for its low duty cycle and high photon numbers per emission, is a 
widely-used commercial fluorophore in SMLM. Therefore, the following work tar-
geted on discriminating between AF647 and other dyes such as AF750 [51], AF700 
[52], CF680 [53], and DY678 [54]. As mentioned above, selecting spectrally suitable 
fluorescent dyes for SMLM has remained a challenge as using well-separated emis-
sion spectra results in low crosstalk (typically 1% [52]) but large chromatic aberra-
tions, whereas using closely overlapping emission spectra eliminates chromatic 
aberrations but demands more complex algorithms to reduce the crosstalk. In 2015, 
Lampe et al. [54] proposed a unique pair-finding algorithm for color assignment and 
achieved two-color 3D imaging of microtubules and clathrin heavy chain in NIH 3T3 
cells labeled with AF647 and DY678, respectively, with a lateral resolution of 25 nm, 
an axial resolution of 66 nm, and a crosstalk within 2%. In 2022, Siemons et al. [55] 
presented probability-based fluorophore classification in ratiometric SMLM using 
three spectrally overlapping fluorophores AF647, CF660, and CF680 to image tyrosi-
nated tubulin, vimentin, and clathrin heavy chain in COS-7 cells, respectively, achiev-
ing a crosstalk within 1%. However, this method only utilizes a portion of collected 
photons for localization, leading to a decrease in spatial resolution. Andronov et al. 
[56] proposed splitSMLM, where dichroic mirrors and filters were selected to provide 
similar spectral widths to two channels and a weighted averaging localization algo-
rithm was developed allowing the use of all detected photons for spectral separation 
and spatial localization. The authors demonstrated three-color imaging of NPCs in 
U2OS cells labeled with AF647, CF660C, and CF680 with a resolution of 20 nm and a 
crosstalk within 2%, successfully refining the positioning of individual NPC proteins 
and revealing that Pom121 clusters act as NPC deposition loci. Li et al. [57] proposed 
globLoc, a global fitting algorithm that utilizes flexible PSF modeling and parameter 

(See figure on next page.)
Fig. 5  Ratiometric SMLM. A Setup diagram of ratiometric SMLM in single-objective microscopy (left), and 
simulated images of different fluorophores acquired in reflected and transmitted paths (right). B Image 
of Nup96 (yellow), ELYS (red), Nup62 (cyan), and WGA (magenta) within single NPCs, labeled with AF647, 
CF660C, DY634, and CF680, respectively. Reproduced with permission from Ref. 57. Copyright 2022 Springer 
Nature. C Image of microtubules (cyan), vimentin (yellow), and clathrin (magenta) in COS-7 cells, labeled with 
ATTO655, ATTO680, and ATTO700, respectively. Reproduced with permission from Ref. 59. Copyright 2022 
American Chemical Society. D Image of clathrin (yellow) and tubulin (red) in COS-7 cells, labeled with Cy3B 
and ATTO643, respectively. Copied with permission from Ref. 60. Copyright 2023 Elsevier. E Setup diagram of 
salvaged fluorescence 4Pi-SMLM. (F) Setup diagram of ratiometric SMLM in 4Pi microscopy
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Fig. 5  (See legend on previous page.)
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sharing to maximize the information extracted from multicolor single-molecule data. 
The authors achieved four-color 3D imaging of Nup62, Nup96, ELYS, and WGA 
within single NPCs labeled with DY634, AF647, CF660C, and CF680, respectively, 
without apparent crosstalk (Fig.  5B), representing the highest number of colors in 
ratiometric SMLM.

To reduce linker length due to the finite size of primary and secondary antibodies, 
in 2015 Platonova et al. [58] utilized nanobodies to deliver dyes to fluorescent protein 
fusion constructs, allowing for accurate labeling of cellular structures in tens of nanom-
eters with minimal linkage error. The authors cotransfected the protein Caveolin1-EGFP 
and Caveolin1-mCherry in U2OS cells and discriminated two cellular structures less 
than 50  nm apart. DNA-PAINT can provide nanometer localization precision due to 
its high photon counts and immunity to photobleaching, but sequential imaging with 
buffer exchange leads to complex experimental operation and extended acquisition time. 
In order to utilize the benefits and avoid the shortcomings of DNA-PAINT, in 2022 
Gimber et al. [59] combined ratiometric imaging with DNA-PAINT allowing for simul-
taneous three-color imaging. This approach, named as spectral demixing DNA-PAINT 
(SD-DNA-PAINT), follows the previous pair-finding algorithm [54] and realizes the 
imaging of microtubules, vimentin and clathrin in COS-7 cells labeled with ATTO655, 
ATTO680, and ATTO700, respectively, with a resolution of 7–14  nm and a crosstalk 
within 5% (Fig.  5C). SD-DNA-PAINT shortens the acquisition time by three-fold for 
three-color imaging compared to Exchange-PAINT [7], and achieves higher localiza-
tion precision and more imaging channels compared to SD-dSTORM [54]. Similarly, in 
2023, Friedl et  al. [60] proposed simultaneous two-color PAINT (S2C-PAINT), which 
combined ratiometric and astigmatic imaging [61] with DNA-PAINT and achieved 
two-color 3D imaging of clathrin and tubulin in COS-7 cells labeled with Cy3B and 
ATTO643, respectively, with a crosstalk lower than 4% and an imaging depth up to 1 μm 
(Fig. 5D). The primary advantage of S2C-PAINT is its straightforward extension to mul-
tiplexing with four or more channels, at the expense of reduced imaging speed.

Ratiometric SMLM can be integrated with innovative physical elements to enhance 
its performance. In 2020, Vissa et al. [62] proposed to use a thin film tunable filter (TTF) 
instead of a dichroic mirror for spectral separation, allowing for the flexible selection 
of the wavelength range passing through by adjusting the incidence angle. The authors 
imaged the mitochondrial protein TOM20 and the peroxisomal protein PMP70 in 
HeLa cells labeled with AF647 and CF680, respectively, achieving a lateral resolution 
of 75–80 nm. By implementing high photon output threshold and density filtering, this 
approach effectively reduces the intensity and number of undesired localizations in each 
channel, coming at the cost of up to 12% photon loss due to the inherently narrow band-
width of the TTF. In 2021, Wang et al. [63] proposed a two-color SMLM method utiliz-
ing a colorimetry camera equipped with five types of pixels: red, green, blue, far infrared, 
and white. This method determined the color of fluorophores based on the intensity 
ratio of colored pixels, while localizing single molecules using white pixels. The authors 
imaged microtubules and mitochondria in COS-7 cells labeled with DL633 and CF680, 
respectively, with a lateral resolution of 20 nm and a crosstalk of 2%. This approach only 
requires one camera for multicolor SMLM, significantly simplifying the optical setup 
and offering convenient multi-color imaging capabilities even for inexperienced users.
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The above-mentioned studies are all developed for single-objective SMLM. For 4Pi-
SMLM [64–66] that uses two opposing objectives in a so-called 4Pi geometry and cou-
ples this interferometric detection realizing 3D resolution down to 10  nm, it is quite 
challenging to insert any other beam splitting element into the sophisticated emission 
configuration. To address this issue, in 2020 Zhang et al. [31] proposed salvaged fluores-
cence, where an additional dichroic mirror was inserted into the excitation path to ‘sal-
vage’ the originally unused fluorescence for color identification without disturbing the 
emission path (Fig. 5E). The authors achieved two-color imaging of endoplasmic reticu-
lum membrane and microtubules in COS-7 cells labeled with AF647 and CF660C, as 
well as three-color imaging of cis, medial, and trans Golgi proteins in HeLa cells labeled 
with DY634, DL650, and CF680, with a 3D resolution of around 20 nm and a crosstalk 
below 2%. In 2022, Chen et al. [67] performed ratiometric imaging in 4Pi-SMLM with a 
further simplified configuration, where two identical filters were inserted into two of the 
total four detection arms to generate intensity difference for color recognition (Fig. 5F). 
This method has fewer instrumentation modifications and, as the authors claimed, 
higher photon collection efficiency compared to salvaged fluorescence, thereby offering 
an improved localization precision.

Ratiometric SMLM only requires one excitation laser which simplifies the instrumen-
tation. Meanwhile, utilizing far-red fluorescent probes with a high photon count per 
emission, low background, and a moderate number of flickers ensures high localization 
precision. However, the overlapping spectra cannot be completely distinguished in this 
type of method, leading to crosstalk between different colors, especially in cases of low 
photon budget. One alternative solution is to extract additional information from the 
emission patterns to assist with color assignment, based on the observation that PSFs 
corresponding to longer wavelengths exhibit a lower cutoff frequency and a larger shape 
[68, 69].

Spectroscopic SMLM

Spectroscopic SMLM (sSMLM) incorporates dispersive elements such as prisms and 
gratings in the emission path to introduce spectrum-dependent elongation, and thus 
encodes spectrum information in single-molecule emission patterns.

In 2015, Zhang et al. [70] introduced a prism-based single-molecule spectrum imaging 
method in a dual-objective microscope, where a prism was placed in one of the detec-
tion arms to encode spectrum information in the dispersed single-molecule emission 
patterns for color identification, and the other arm was utilized for spatial localization 
as usual. This approach was employed to image peroxisomes, vimentin filaments, micro-
tubules, and mitochondrial outer membrane in PtK2 cells labeled with DY634, DL650, 
CF660C, and CF680, respectively, achieving a spectral resolution of 10 nm with a cross-
talk within 2% (Fig. 6A). Although this configuration is capable of detecting up to four 
colors simultaneously in fixed cells, its horizontal implementation is not suitable for 
live-cell imaging. To address this issue, in 2022 Bulter et al. [71] conducted prism-based 
multicolor imaging using an inverted microscope, employing a bottom oil-immersion 
objective for spatial localization and a top water-dipping objective for spectral meas-
urement, which simplified the sample mounting by eliminating the need to position 
samples between two closely spaced coverslips. The authors demonstrated three-color 
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3D imaging of mitochondria, microtubules, and the nucleus envelope in COS-7 cells, 
labeled with Cy3B, ATTO647N, and ATTO700, respectively. In 2016, Mlodzianoski et al. 
[72] developed prism-based spectrum imaging in a single-objective microscope using a 
50:50 beam splitter to split the florescence into two paths, with a prism inserted in one 
of them. With this method the authors observed ‘spectrum wandering’, a phenomenon 
that, when combined with localization, can reveal nanoscale variations in the molecular 
environment. In 2017, Moon et al. [73] demonstrated the applicability of a similar opti-
cal setup for live-cell imaging. However, these configurations require multiple discrete 

Fig. 6  Spectroscopic SMLM. A Schematic of sSMLM based on the prism and image of peroxisomes (green), 
vimentin filaments (magenta), microtubules (yellow), and mitochondrial outer membrane (cyan) in PtK2 
cells, labeled with DY634, DL650, CF660C, and CF680, respectively. Reproduced with permission from Ref. 
70. Copyright 2015 Springer Nature. B Schematic of sSMLM based on the double-wedge prism. C Schematic 
of sSMLM based on the reflection grating and image of microtubules (orange) and mitochondria (green) 
in COS-7 cells, labeled with AF568 and Mito-EOS 4b, respectively, and auto-fluorescent spot (blue) from 
background. Reproduced with permission from Ref. 78. Copyright 2016 Springer Nature. D Schematic of 
sSMLM based on the transmission grating. Resulted PSFs for spatial localization and color identification are 
shown nearby the setup diagram, with a scale bar of 2 μm
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optical components with stringent optical alignment requirements. In 2022, Song et al. 
[74] designed a dual-wedge prism-based spectrometer (Fig.  6B), which significantly 
simplified the optical setup by the monolithic construction and enhanced spatial and 
spectral transmission efficiencies through meticulous material selection, precise dimen-
sioning, and anti-reflection coating. The authors enabled the achievement of a spatial 
resolution of 10 nm and a spectral resolution of 4.5 nm within a 2000 photon budget, 
along with a photon transmission efficiency of 40%. This approach facilitates seam-
less integration into conventional microscopes, thereby democratizing the adoption of 
sSMLM across diverse users in the biological research community. The utilization of 
prism-based sSMLM has also extended to applications such as single-particle tracking 
[75–77].

Another widely-used dispersive elements, diffraction gratings, can also be utilized in 
sSMLM. In 2016, Dong et al. [78] proposed sSMLM based on gratings, where a reflec-
tion grating with a period of 150 lines/mm was used to generate the 0th and 1st dif-
fraction order images with an intensity ratio of 1:3. The 0th order image was used for 
spatial localization and the 1st order image was used for spectral identification. The 
authors imaged microtubules and mitochondria in COS-7 cells labeled with AF568 and 
Mito-EOS 4b, respectively, with a spatial resolution of 25 nm and a spectral resolution 
of 0.63 nm/pixel (Fig. 6C). However, in this method only a quarter of the photons were 
utilized for localization, leading to a 50% reduction in localization precision. To fur-
ther enhance spatial resolution and mitigate photon loss in transmission gratings, the 
same year Bongiovanni et al. [79] introduced the use of a blazed transmission diffrac-
tion grating with a period of 300 lines/mm in sSMLM, which was placed in front of the 
camera to differentiate the 0th and 1st orders, maintaining an intensity ratio of 3:2. The 
authors used Nile red’s hydrophobic sensitivity to monitor environmental changes in 
human epithelial cells, achieving a spatial resolution of 42 nm and a spectral resolution 
of 9 nm. This method can super-resolve the hydrophobicity of amyloid aggregates asso-
ciated with neurodegenerative diseases as well as the hydrophobic alterations occurring 
in mammalian cell membranes. While this method enhances photon usage for localiza-
tion, not all localizations can be effectively utilized in spectral analysis, degrading the 
spatial resolution. In 2019, Song et al. [80] introduced the biplane configuration [81] in 
sSMLM, involving a pair of mirrors to create an optical distance difference without the 
need of additional optical elements. The authors successfully imaged microtubules and 
mitochondria in COS-7 cells labeled with AF647 and CF660C, respectively, achieving 
a lateral resolution of 47  nm and an axial resolution of 118  nm with an average pho-
ton count of 550. In 2020, Song et al. [82] introduced a symmetrically dispersed sSMLM 
approach, where a transmission grating with a period of 80 lines/mm was utilized to 
generate ± 1st diffraction orders, thereby creating symmetrical images (Fig. 6D). In this 
method, spatial information was extracted by pinpointing the midpoint of the two sym-
metrical spectral images, while spectral information was derived from the spectral shift 
distance calculation. This method, compared to the previous technique [78], resulted 
in a 42% improvement in spatial precision and a 10% enhancement in spectral preci-
sion, achieving a spatial resolution of 25 nm and a spectral resolution of 1.9 nm within 
a 1000 photon budget at the expense of 28.5% photon loss in the 0th order. The authors 
imaged microtubules and mitochondria in COS-7 cells labeled with AF647 and CF680, 
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respectively, with a spatial resolution of 66 nm. To further increase the localization den-
sity, in 2022 Martens et al. [83] proposed high-density sSMLM by simply incorporating 
a grating with a period of 70 lines/mm in front of the camera, which can differentiate 
fluorophores with peak emission wavelengths less than 15 nm apart, leading to a five-
fold increase in emitter density. This method, characterized by its inherent simplicity 
and photon efficiency, is well-suited for applications requiring effective photon-based 
separation of spectrally distinct entities, such as in low-signal flow cytometry.

Deep learning can be combined with sSMLM to improve the imaging speed, as 
well as the spatial and spectral resolution. In 2019, Zhang et al. [84] developed a neu-
ral network-based spectral classification method to reduce color misassignment rates, 
achieving a classification accuracy of 99.8% and a lateral resolution of 47 nm in imaging 
tubulin and mitochondria in COS-7 cells labeled with AF647 and CF660, respectively. In 
2020, Gaire et al. [85] developed a deep-learning algorithm to reconstruct high-density 
super-resolution images from low-density images, achieving an 8-fold reduction in data 
acquisition time for two-color imaging of peroxisome and mitochondria in fixed COS-7 
cells and a 6.67-fold reduction for three-color imaging of tubulin, mitochondria, and 
peroxisome in fixed U2OS cells without compromising the spatial resolution. In 2023, 
Manko et al. [86] proposed srUnet, a U-net-based spectral image processing method to 
enhance spectral and spatial signals and compensate for photon loss, achieving a spec-
tral resolution of 4.5 nm and a spatial resolution of 6 nm as compared to 9 nm for the 
raw data, in a 1000 photon budget. In 2024, Gaire et al. [87] developed a computational 
method for low-photon budget scenarios, which utilized a two-network model including 
a U-net for spatial PSF localization and a deep convolution neural network for spectral 
PSF enhancement. The authors reconstructed the spatial organization of immunofluo-
rescence-labeled histone markers, achieving a localization count that is 8.8% higher than 
that obtained through conventional sSMLM reconstruction.

In comparison to ratiometric SMLM, spectroscopic SMLM provides detailed spectral 
information of fluorophores rather than solely distinguishing colors, with minimal cross-
talk across different channels. Using extensively broadened emission patterns enhances 
spectral resolution and color recognition accuracy but reduces the photon count per 
pixel, thereby lowering the localization precision while also demanding a lower emitter 
density to prevent overlap. Therefore, achieving a balance between spectral and spatial 
resolution is crucial for optimizing the performance of sSMLM techniques. Additionally, 
the efficiency of diffraction orders should be considered when using a grating for disper-
sion, as this can lead to photon loss and subsequently deteriorate localization precision.

PSF engineering SMLM

An experimental emission pattern, known as the PSF, carries a wealth of information. 
For instance, PSFs associated with longer wavelengths demonstrate a lower cutoff fre-
quency and a broader shape, which can be leveraged for color recognition in multicolor 
SMLM imaging [68, 69]. However, this distinction is too subtle to be accurately iden-
tified without the application of deep-learning-based algorithms. The PSF engineering 
approach, commonly employed for axial localization in SMLM, encodes the axial posi-
tions of single molecules in the form of their PSFs by utilizing various techniques such 
as a cylindrical lens [61], prefabricated dielectric mask [88, 89], liquid crystal spatial 
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light modulator (SLM) [90–93], or deformable mirror [94, 95]. With smart design, this 
method can also be adapted to facilitate multicolor SMLM imaging.

In 2014, Broeken et  al. [96] proposed a method for simultaneously measuring the 
position and color of single molecules, which used an SLM to create a large-pitch grat-
ing with a period of 1.2  mm to generate side lobes around the main lobe of the PSF 
(Fig. 7A). The spacing between the main and side lobes exhibited a linear relationship 
with the emission wavelength, enabling the differentiation of closely positioned spectra 
such as QD605, QD655, and QD705 with misidentification rates of 5.6%, 22%, and 8.9%, 
respectively.

In 2016, Shechtman et al. [97] proposed two-color volumetric SMLM imaging based 
on PSF engineering (Fig. 7B), where an SLM was utilized to create a phase mask that 
imparts distinct phase delays for different wavelengths, resulting in varying PSFs from 
red and green fluorophores at different axial positions. The authors achieved two-color 
imaging of microtubules and mitochondria in BS-C-1 cells, labeled with AF647 and 
AF532, respectively, with a lateral resolution of 50  nm. This innovative method paves 
the way for applying PSF engineering in multicolor SMLM, yet it has several drawbacks. 
Firstly, the SLM is limited to modulating only s-polarization, leading to a 50% photon 
loss. Secondly, the specific wavelength design may not match the emission spectra of 
many fluorophores commonly used in SMLM. Building upon this concept, in 2021 Opa-
tovski et al. [98] introduced multiplexed PSF engineering (Fig. 7C), where two dichroic 
mirrors were used to separate three channels, each incorporating a unique phase mask 
to shape PSFs in a tetrapod configuration with varying orientations. By implementing 
this method, the PSFs can be tailored with increased flexibility and reduced photon loss, 
all while maintaining the field of view. This method represents a promising advancement 
for multicolor localization and optimizing photon utilization efficiency, although it was 
developed for single particle tracking.

In 2019, Hershko et  al. [99] introduced a novel approach consisting of two compo-
nents of a neural network, the first of which was trained with raw data from two-color 
quantum dots to enable color discrimination, while the second one incorporated an SLM 
optimizer and a reconstruction network to enhance aberrations for precise localization 
and accurate color identification. Through this methodology, the authors achieved an 
impressive classification accuracy of 96.4% in quantum dots using standard PSFs, and 
further improved it to 99.4% with the optimized SLM pattern. The authors demon-
strated the imaging results of microtubules and mitochondria in HeLa cells, labeled with 
AF647 and AF555, respectively.

In 2024, Van den Eynde et  al. [100] introduced an innovative add-on module called 
Circulator to encode color information in SMLM imaging (Fig. 7D). This module uti-
lized a polarized beam splitter to separate the emission light into two paths, with each 
path being transmitted or reflected by a dichroic mirror, generating a pair of split PSFs 
whose rotation angles corresponded to the color of the fluorophore. Using this method, 
the authors achieved simultaneous three-color imaging of microtubules, vimentin, and 
clathrin, labeled with ATTO643, AS488, and Cy3B, respectively, thereby tripling the 
overall acquisition speed (Fig. 7E).

While PSF engineering SMLM effectively minimizes crosstalk between different 
channels, it does have certain limitations. Firstly, the elongated shape of the PSFs 
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Fig. 7  Multicolor SMLM based on PSF engineering. A Setup diagram of PSF engineering based on a 
large-pitch grating and measured PSFs of beads. Reproduced with permission from Ref. 96. Copyright 2014 
Optica Publishing Group. SLM: spatial light modulator. B Setup diagram of two-channel PSF engineering 
and simulated PSFs of microspheres. Reproduced with permission from Ref. 97. Copyright 2016 Springer 
Nature. C Setup diagram of multiplexed PSF engineering and measured PSFs of microspheres. Reproduced 
with permission from Ref. 98. Copyright 2021 American Chemical Society. D Setup diagram of Circulator 
and detected PSFs for different fluorophores. QWP: quarter-wave plate. PBS: polarized beam splitter. PCE: 
polarization-compensating element. Reproduced with permission from Ref. 100. Copyright 2024 Springer 
Nature. E Image of microtubules (yellow), vimentin (blue), and clathrin (red), labeled with ATTO643, AS488, 
and Cy3B, respectively. Reproduced with permission from Ref. 100. Copyright 2024 Springer Nature
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provides detailed localization and color information but requires a substantial num-
ber of pixels on the camera chip. This requirement can complicate the application 
of this technique to high-density single-molecule data, which may be mitigated by 
incorporating dense localization algorithms [101, 102]. Secondly, extending this 
method to accommodate more channels presents difficulties, as designing and rec-
ognizing PSFs with distinct shapes at various wavelengths becomes increasingly 
complex. Employing deep-learning-based techniques for these processes offers a 
promising solution.

Excitation modulation SMLM

In ratiometric SMLM, spectroscopic SMLM, and PSF engineering SMLM, color 
assignments rely on the emission spectra of fluorophores, with the accuracy of color 
classification dependent on the distinct emission spectra of the dyes. The challenge 
of precise classification arises when emission spectra are closely spaced, a common 
occurrence in multicolor SMLM techniques.

To solve this problem, in 2018 Gómez-García et  al. [103] introduced multicolor 
DNA-PAINT, termed as fm-DNA-PAINT, which employed sine-wave modulation 
with varying frequencies on distinct excitation lasers through acousto-optic modu-
lators and analyzed the detected intensity of each pixel to track the brightness trend 
of each PSF for color assignment (Fig.  8A). The authors demonstrated two-color 
imaging with Cy5-labeled microtubules and Cy3-labeled mitochondria in BS-C-1 
cells with a lateral resolution of 46 nm and a crosstalk of only 2.8% (Fig. 8B). This 
approach, relying on excitation modulation, preserves the advantages of conven-
tional DNA-PAINT while enabling simultaneous acquisition with minimal crosstalk. 
This approach offers scalability in the number of colors limited only by commer-
cially available oligo-coupled antibodies, suggesting potential for further expansion, 
while a persistent challenge lies in effectively managing the photophysical character-
istics of multiple fluorophores within a single buffer.

In 2023, Wu et  al. [104] introduced excitation-resolved stochastic optical recon-
struction microscopy (ExR-STORM) (Fig. 8C). The methodology involves sequential 
illumination of the specimen with lasers emitting at nearby wavelengths selectively 
exciting fluorophores with distinct excitation spectra, and color assignment based 
on their emission response quasi-simultaneously acquired with a high-frequency 
galvo-mirror scanning system within a single exposure cycle [105, 106]. The authors 
successfully imaged microtubules, intermediate filaments, endoplasmic reticulum, 
and mitochondrial outer membrane in COS-7 cells labeled with DL633, AF647, 
DY654, and CF660C, respectively, with a lateral resolution of 19 nm, an axial resolu-
tion of 55 nm, a crosstalk within 3%, and a rejection rate within 35% (Fig. 8D). This 
method showcases the remarkable capability to distinguish fluorophores with emis-
sion peaks separated by as near as 5  nm, even though the use of three lasers with 
closely spaced wavelengths may not be the most cost-effective approach.

Excitation modulation SMLM is an innovative and promising technique for identi-
fying the color of fluorophores with similar emission spectra. This technique offers 
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low crosstalk and facilitates straightforward expansion to more channels, although it 
comes with increased complexity and higher costs in instrumentation.

Conclusions and outlook
In this review, we introduced the existing multicolor SMLM approaches (Tables 1 and 
2) with the following advantages and disadvantages.

(1)	 Sequential multicolor SMLM facilitates highly-multiplexed and low-crosstalk 
investigations of biological structures while suffering from prolonged acquisition 
time.

Fig. 8  Multicolor SMLM based on excitation modulation. A Setup diagram of fm-DNA-PAINT and 
representative example PSFs with frequency modulation. Scale bar, 250 nm. AOM: acousto-optic modulator. 
B Image of Cy5-labeled microtubules (green) and Cy3-labeled mitochondria (magenta) in BS-C-1 cells. 
Copied with permission from Ref. 103. Copyright 2018 the National Academy of Sciences of the United States 
of America. C Setup diagram of ExR-STORM, representative example PSFs at different excitation wavelengths, 
and absorption spectra of the fluorophores. AOTF: acousto-optic tunable filter. D Image of microtubules 
(yellow), intermediate filaments (magenta), endoplasmic reticulum (green), and mitochondrial outer 
membrane (cyan) in COS-7 cells, labeled with DL633, AF647, DY654, and CF660C, respectively. Reproduced 
with permission from Ref. 104. Copyright 2023 Springer Nature
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Table 1  Comparison between different multicolor SMLM methods

Method Channel Crosstalk Resolution Speed Density Setup

Multi-fluorophores 2–4 Low Normal Normal Normal Normal

Activator-reporter 2–6 High High Normal Normal Complex

Quenching 2–5 Low High Low Normal Simple

Exchange-PAINT 2–30 Low High Low Normal Simple

Ratiometric SMLM 2–4 High High High Normal Simple

Spectroscopic SMLM 2–4 Low Normal High Low Complex

PSF engineering SMLM 2–3 Low Normal High Low Complex

Excitation modulation SMLM 2–4 Low High High Normal Complex

Table 2  Multicolor dye pairs used in SMLM

Dyes References

ATTO520, AF647 [28]

AF532, AF568 [78]

AF532, AF647 [97]

ATTO542, ATTO655 [87]

AF555, AF647 [99]

ATTO565, ATTO643 [60]

AF647, CF660 [84]

AF647, CF660C [31, 80]

AF647, DY678 [54]

AF647, CF680 [53, 60, 62, 74, 82, 87]

AF647, AF700 [52]

AF647, AF750 [34, 51]

AF647, mEos3.2 [30]

Cy3, Cy5 [103]

Cy3B, ATTO643 [60]

CF568, AF647 [68, 69]

CF660, CF680 [83]

DL633, CF680 [63]

EGFP, mCherry [58]

mEos3.2, AF647 [30]

Mito-EOS 4b, AF568 [78]

rsFastLime, Cy5 [26]

SRA552-maleimide, SRA577-NHSS [50]

AS488, Cy3B, ATTO643 [100]

ATTO488, Cy3B, AF647 [103]

AF647, CF660, CF680 [55]

AF647, CF660C, CF680 [56, 60, 85]

ATTO655, ATTO680, ATTO700 [59]

Cy3B, ATTO647N, ATTO700 [71]

Dendra2, PAmCherry, PAmKate [72]

DL633, AF647, DY654, CF660C [104]

DY634, DL650, CF680 [31, 67]

DY634, AF647, CF660C, CF680 [57]

DY634, DL650, CF660C, CF680 [70]



Page 21 of 27Chen et al. PhotoniX            (2024) 5:29 	

(2)	 Ratiometric SMLM features simple instrumentation and is compatible with far-red 
fluorophores that exhibit excellent blinking behaviors, but it is essential to address 
concerns regarding crosstalk suppression to ensure accurate color assignment.

(3)	 Spectroscopic SMLM provides detailed spectral information but needs a tradeoff 
between spectral and spatial resolution.

(4)	 PSF engineering SMLM is a promising advancement for enhancing multicolor 
localization and optimizing photon efficiency, at the expense of potential overlap of 
elongated emission patterns.

(5)	 Excitation modulation SMLM has a remarkable capability to distinguish fluoro-
phores with similar emission spectra, despite the increased complexity it intro-
duces to the instrumentation.

The development of multicolor SMLM is an emerging field aiming at creating essen-
tial and robust tools to study the spatial and temporal relationship and interactions of 
cellular and tissue constituents, especially at the subcellular and organelle level. The 
biological impact of the researches in this exciting field is already significant and we 
believe the following aspects will further broaden its application range towards pro-
found biological and biomedical challenges:

(1)	 Extension to dynamic imaging, including probe development for live cells [107–
110] and color assignment for dense data [111–113], can facilitate the simultaneous 
visualization of multiple protein species with precise spatial and temporal resolu-
tion.

(2)	 Extension to large field-of-view imaging, particularly through the integration of 
high-power homogenous illumination [114, 115], field-dependent single-molecule 
data analysis [116–118], and image stitching techniques [119, 120], can significantly 
enhance the throughput of biological studies.

(3)	 Extension to thick tissues, including combination with adaptive optics [121–129], 
tissue clearing [130–132], and in situ PSF model reconstruction [133, 134], can pro-
vide valuable insights into the structure, function, and pathology of complex bio-
logical systems.

(4)	 Extension to more channels, for example 5–10 channels, potentially achieved by 
employing appropriate dyes [135, 136], combination of multiple multicolor SMLM 
techniques, and advanced computational post-processing algorithms [101, 102, 
137, 138], can give a detailed elucidation of the reorganization, interactions, and 
alterations in molecular composition within cells and tissues.

(5)	 Extension to multimodal super-resolution imaging, including polarization states 
[139–141], molecular movements [142, 143], lifetime [144, 145], can help gather 
complementary information within one sample, allowing for a better understand-
ing of structures and functions.

(6)	 Extension to ultra-high-resolution imaging, including combination with minimal 
photon fluxes (MINFLUX) [8, 9], repetitive optical selective exposure (ROSE) [105, 
106], or other modulation enhanced localization microscopy [146–148], can pro-
mote the investigation of samples with single-digit nanometer resolution.
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With these developments, we anticipate that multicolor SMLM will provide unprec-
edented levels of details, enhancing our understanding of cellular mechanisms, pro-
tein interactions, and dynamics of molecular assemblies across a variety of biological 
contexts.
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