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Abstract 

Optical encryption strategies utilizing fully coherent light have been widely explored 
but often face challenges such as speckle noise and beam instabilities. In this work, we 
introduce a novel protocol for multi-channel optical information encoding and encryp-
tion using vectorial spatial coherence engineering of a partially coherent light beam. 
By characterizing the beam’s spatial coherence structure with a 2× 2 coherence matrix, 
we demonstrate independent control over the three components of the coherence 
Stokes vector. This allows for three-channel optical information encoding and encryp-
tion, with applications in color image representation. Unlike existing methods based 
on fully coherent light modulations, our approach utilizes a two-point dependent 
coherence Stokes vector, proving resilient to random noise in experimental scenarios. 
Our findings provide a robust foundation for higher-dimensional optical encoding 
and encryption, addressing limitations associated with partially coherent light in com-
plex environments.

Keywords: Optical encryption, Partially coherent light, Spatial coherence engineering, 
Coherence Stokes vector, Color image encoding

Introduction
Structured light, characterized by desired amplitude, phase, and polarization in spatial, 
temporal, or spatial-temporal domains, has proven to be a potent tool in various applica-
tions [1, 2]. Notably, structured light with multiple degrees of freedom offers extensive 
capabilities for multi-dimensional information encoding, transfer, storage, and commu-
nication [3–11]. Optical encryption has gained prominence for enhancing information 
security in these applications, with various strategies employing structured light beams 
[12–15]. Techniques involving holograms, metasurfaces, and integrated optical plat-
forms have been proposed for multi-dimensional optical encryption [16–20]. However, 
these methods, relying on the modulation of fully coherent light, often encounter issues 
such as unwanted speckles, beam wanders, and intensity scintillations [21, 22].

Conversely, partially coherent light has been shown to effectively suppress speckle 
noise and reduce beam wanders and scintillations during light-matter interactions 
due to its low coherence feature [23–26]. The rapid development of theory and 
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experiment in optical coherence structure engineering has extended the application 
of partially coherent light to optical encryption [27, 28]. Unlike conventional meth-
ods that control the deterministic qualities of fully coherent light, optical coherence 
structure engineering involves the modulation of second-order statistical properties 
of random light [29]. By tailoring the spatial coherence structure, it has been demon-
strated that a partially coherent beam can exhibit extraordinary propagation features, 
including self-shaping, self-focusing, self-splitting, and self-reconstruction in free 
space [30]. The optical coherence structure is now considered an efficient and unique 
degree of freedom for partially coherent light, finding applications in sub-Rayleigh 
optical imaging [31, 32], robust information transmission [33, 34], particle trapping 
[35], beam shaping [36], and optical measurement and sensing [37–39].

Recently, an optical encryption protocol leveraging coherence structure engineer-
ing of a scalar partially coherent light beam was proposed [28]. In the protocol, the 
second-order spatial coherence structure of the beam serves as the information car-
rier for optical encryption, in contrast to deterministic characteristics like ampli-
tude, phase, and polarization of fully coherent optical fields. It was demonstrated 
that coherence-based optical encryption holds an advantage over encryption meth-
ods based on fully coherent light modulation in terms of security. Additionally, the 
encoded information in the spatial coherence structure is more robust against com-
plex environmental disturbances, such as optical turbulence. However, this method 
relies on engineering a scalar spatial coherence structure, allowing only single-chan-
nel optical encryption. Thus, it faces challenges in achieving multi-channel optical 
information encoding and encryption. Furthermore, the encryption of color infor-
mation, crucial in applications such as vision and target recognition, remains unad-
dressed by coherence-based technology.

In this study, we present a protocol for multi-channel optical information encoding 
and encryption using vectorial spatial coherence engineering of a partially coherent 
vector beam. The vectorial spatial coherence structure for a beam is characterized by 
a 2× 2 coherence matrix. We demonstrate that, although the elements in the coher-
ence matrix are correlated, all three components in the three-dimensional coherence 
Stokes vector [40], derived from the coherence matrix, are uncorrelated and can be 
independently controlled. Thus, the coherence Stokes vector for a partially coher-
ent light beam can be regarded as the information carrier, allowing for three-chan-
nel optical information encoding and encryption. Associating the three independent 
components of the coherence Stokes vector with three primary color channels—red, 
green, and blue—we illustrate that the coherence Stokes vector can be flexibly utilized 
for color image encoding and encryption. It is noteworthy that, unlike the polariza-
tion Stokes vector obtained from the polarization matrix, the coherence Stokes vector 
is a two-point dependent quantity, describing the second-order statistical properties 
of the partially coherent vector beam. Through our experiments, we demonstrate that 
this two-point dependent coherence Stokes vector, and consequently the encoded 
three-channel information, remains robust even when the partially coherent beam is 
subjected to random noise of varying strength. Our results pave the way for higher-
dimensional optical encoding and encryption in complex environments with partially 
coherent light.
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Principle
Coherence Stokes vector and three‑channel optical encryption

The second-order statistical properties of a partially coherent vector beam can be char-
acterized by a 2× 2 coherence matrix [41]. In the space-frequency domain, the coher-
ence matrix for a partially coherent vector beam, propagating along z axis, is specified by 
a cross-spectral density matrix, i.e.,

in which the elements are expressed as

with (α,β) ∈ (x, y) . Above, r1 and r2 are two arbitrary position vectors in the transverse 
plane, Ex(r) and Ey(r) are the x and y components for the random field realizations, the 
asterisk denotes the complex conjugate, and the angle brackets denote the ensemble 
average over the field realizations.

According to the generalized van Cittert–Zernike theorem, a partially coherent beam 
source can be generated by propagating a spatially incoherent source. Therefore, the 
coherence matrix for a partially coherent beam can be expanded as [42, 43]

where

is the polarization matrix of the spatially incoherent source with Ex(v) and Ey(v) being 
the x and y components of its field realization ( v being the position vector in the inco-
herent beam source plane), and Hx(r, v) and Hy(r, v) are the response functions, for the 
x and y field components, of the optical system between the incoherent source and the 
partially coherent beam source. In principle, the response functions can be any well-
behaving functions, while pαβ(v) must satisfy the nonnegative condition, i.e., pxx(v) ≥ 0 , 
pyy(v) ≥ 0 , and pxx(v)pyy(v)− pxy(v)pyx(v) ≥ 0 for any v.

From Eq.  (3), it is found that by the generalized van Cittert–Zernike theorem, the 
polarization matrix of an incoherent source can be encoded into the coherence matrix, 
which is also named as vectorial spatial coherence structure of a partially coherent beam 
source. This finding has been used in synthesizing the partially coherent vector beams 
with nonconventional spatial coherence structures [44–47]. In this work, we use this 
relation to realize the multi-channel optical information encoding and encryption. The 
diagonal elements pxx(v) and pyy(v) in the polarization matrix , and thus Wxx(r1, r2) and 
Wyy(r1, r2) in the coherence matrix, can be controlled independently. However, the anti-
diagonal elements pxy(v) and pyx(v) [ Wxy(r1, r2) and Wyx(r1, r2) ] are connected tightly to 
the diagonal elements pxx(v) and pyy(v) [ Wxx(r1, r2) and Wyy(r1, r2) ]. Therefore, the anti-
diagonal elements in the polarization and coherence matrices cannot be used to encode 
additional independent information as the diagonal elements.

(1)W(r1, r2) =
Wxx(r1, r2) Wxy(r1, r2)
Wyx(r1, r2) Wyy(r1, r2)

,

(2)Wαβ(r1, r2) = �E∗

α(r1)Eβ(r2)�,

(3)Wαβ(r1, r2) =

∫∫

pαβ(v)H
∗

α(r1, v)Hβ(r2, v)d
2v,

(4)pαβ(v) = �E∗

α(v)Eβ(v)�,
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To separate all the independent degrees of freedom in this encoding, we adopt the 
famous polarization Poincare sphere, in which the three orthogonal coordinates, S1(v) , 
S2(v) , and S3(v) can be controlled independently [48]. These three orthogonal coordi-
nates form the polarization Stokes vector

with its elements being determined totally by the polarization matrix p(v) , i.e.,

Above

are three Pauli spin matrices and tr denotes the matrix trace. As the polarization matrix 
is Hermitian, the elements in the polarization Stokes vector are real quantities. Conse-
quently, the polarization Stokes vector can be employed to encode spatial information 
with real values across three distinct channels.

Akin to the polarization Stokes vector, the coherence Stokes vector for the partially 
coherent vector beam can be defined as [40]

where the three elements are obtained from the coherence matrix, i.e.,

The coherence Stokes vector is a two-position dependent vector that describes the 
second-order statistical properties of the partially coherent vector beam [49, 50]. The 
three elements in the coherence Stokes vector have clear physical interpretations [51] 
such that S1(r1, r2) , S2(r1, r2) , and S3(r1, r2) describe the differences of the electric-field 
x- and y-component, +π/4 - and −π/4-linearly polarized component, and right- and 
left-circularly polarized component correlations at points r1 and r2 , respectively.

Taking Eq. (6) into Eq.  (3) and letting the response functions 
Hx(r, v) = Hy(r, v) = H(r, v) , we obtain a generalized van Cittert–Zernike theorem for 
the Stokes vectors, i.e., [52]

Based on the above relation, we find that the polarization Stokes vector, carrying 
three-channel optical information such as three independent optical images, can be 
encoded into the coherence Stokes vector of a partially coherent beam. Furthermore, the 
response function H(r, v) can contribute additional encryption keys during the encod-
ing process. Consequently, the initially described three-channel optical encoding system 
transforms into a more comprehensive three-channel optical encryption protocol.

Figure 1 shows the schematic of our three-channel optical information encoding and 
encryption protocol based on the vectorial spatial coherence structure engineering of 

(5)S(v) = [S1(v), S2(v), S3(v)],

(6)Sj(v) = tr[p(v)σ j], j ∈ (1, 2, 3).

(7)σ 1 =

(

1 0
0 − 1

)

, σ 2 =

(

0 1
1 0

)

, σ 3 =

(

0 − i
i 0

)

,

(8)S(r1, r2) = [S1(r1, r2), S2(r1, r2), S3(r1, r2)],

(9)Sj(r1, r2) = tr[W(r1, r2)σ j], j ∈ (1, 2, 3).

(10)Sj(r1, r2) =

∫∫

Sj(v)H
∗(r1, v)H(r2, v)d

2v.
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a partially coherent light beam. The proposed protocol consists of three stages. At the 
first stage, three-channel optical information (plaintext) S1(v) , S2(v) , S3(v) , modulated 
in a fully coherent structured light beam, is encoded into the three two-point coherence 
Stokes vector elements S1(r1, r2) , S2(r1, r2) , and S3(r1, r2) of a partially coherent ran-
dom light beam via a generalized van Cittert–Zernike theorem [c.f., Eq. (10)]. In Fig. 1a, 
the dynamic diffuser is used to transform a fully coherent light beam into a spatially 
incoherent beam, while the encoding system H is used to transform the spatially inco-
herent beam into the partially coherent random beam. At the second stage, the coher-
ence Stokes vector (ciphertext) of the partially coherent beam is measured through a 
generalized Hanbury Brown and Twiss experiment [53, 54]. The elements in the coher-
ence Stokes vector are complex in general, since the coherence matrix only follows the 
quasi-Hermitian property, i.e., W†(r1, r2) = W(r2, r1) , where the dagger denotes the 

Fig. 1 Principle of three-channel optical information encoding and encryption based on engineering the 
coherence Stokes vector of a partially coherent beam. a Schematic of encoding three-channel information 
S1(v) , S2(v) , and S3(v) into the coherence Stokes vector S(r1, r2) = [S1(r1, r2), S2(r1, r2), S3(r1, r2)] of a 
partially coherent beam via the encoding system H. The three-channel information is decoded by the 
decoding system H−1 . b Three-channel images encoding and decoding. c Color image encoding and 
decoding
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Hermitian adjoint. Finally, the three-channel optical information is decoded by using 
the measured complex coherence Stokes vector and the inverse response function H−1 
embedded with the correct decryption keys.

As a specific example, we demonstrate in Fig. 1b the theoretical simulation for encod-
ing and decoding three different images with engineering and measuring the polariza-
tion and coherence Stokes vectors of optical beams. In the simulation, the amplitude 
images (letters ‘A’, ‘B’, and ‘C’) is firstly loaded by the three elements of the polarization 
Stokes vector of a fully coherent structured beam by controlling the amplitude and phase 
of its two orthogonal field components Ex(v) and Ey(v) . Through adding random phase 
into the electric field, Ex(v) and Ey(v) become the components of the random field reali-
zation for an spatially incoherent source. We then let the incoherent beam propagates 
through an optical system with its response function having Fourier transform form, i.e., 
H(r, v) = A0 exp

[

iπ
�f
(v2 − 2v · r

]

 , where A0 is an constant, f = 250 mm is the focal dis-

tance of the Fourier transform thin lens, and � = 532 nm is the wavelength. In the out-
put plane, the spatially incoherent beam becomes a partially coherent beam. We collect 
the field realizations Ex(r) and Ey(r) of the partially coherent beam in the output plane. 
The coherence Stokes vector [S1(r1, r2), S2(r1, r2), S3(r1, r2)] can be calculated by Eqs. (2) 
and (9). The simulated real and imaginary parts of the coherence Stokes vector elements 
are shown in Fig. 1b. Finally, we find the encoded three optical images are well recovered 
by inversely Fourier transform of the measured coherence Stokes vector elements.

One remarkable application of our three-channel optical encoding protocol is to real-
ize the color image encoding and encryption. In optics, all colorful image can be decom-
posed into three primary-color-channels, i.e., red (R), green (G), and blue (B) channels. 
Therefore, as shown in Fig. 1c, in our protocol, we let S1(v) , S2(v) , and S3(v) carry infor-
mation of our lab logo in R, G, B channels, respectively. By the generalized van Cittert–
Zernike theorem, the colorful image can be encoded into the coherence Stokes vector of 
a partially coherent light beam. As shown in Fig. 1c, through measuring the coherence 
Stokes vector and using the inverse Fourier transform, the lab logo can be well recovered 
with correct colors.

It is notable that different from the traditional encryption protocols, the three-chan-
nel plaintext information in our optical-coherence-based one is encoded into the sec-
ond-order field correlations rather than into the deterministic characteristics of a fully 
coherent light beam. Since it requires an entire statistical ensemble of a large number of 
field realizations to reconstruct the second-order field correlations, the multi-channel 
information concealed in the ciphertext of the optical-coherence-based protocol is more 
difficult to compromise, compared to the protocols based on fully coherent light modu-
lation. In addition, it has been proved that the second-order field correlations are much 
more robust than the deterministic characteristics when the beam suffers disturbances 
or noisy environments, leading to a robust multi-channel optical encryption.

Synthesis of partially coherent vector beam for three‑channel optical encoding

We now turn to discuss how to synthesize the partially coherent vector beam in experi-
ment to realize the three-channel information encoding. In our experiment, the par-
tially coherent vector beam is synthesized with the help of the complex-random-mode 
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representation (RMR), with which the coherence matrix is expanded as the summation 
of N vector modes [55, 56]

where En(r) and �n are the vectorial complex random mode and the corresponding 
modal weight. According to the expression in Eq.  (11), the partially coherent vector 
beam can be synthesized by superposing a set of vectorial complex random modes. In 
the RMR method, the modal weights for all random modes are equal to 1/N and the 
electric field of the random mode can be written as

where τx(r) and τy(r) are the common amplitudes for all random modes, Tx,n(r) and 
Ty,n(r) are the complex random functions imposed on the deterministic common ampli-
tudes, and êx and êy are two Cartesian unit vectors along the x and y directions. Through 
Eqs.  (2), (11), and (12), it is found that the auto-correlations of the complex random 
functions Tx,n(r) and Ty,n(r) give rise to the diagonal elements Wxx(r1, r2) and Wyy(r1, r2) 
of the coherence matrix, while the cross-correlations between Tx,n(r) and Ty,n(r) intro-
duce the anti-diagonal elements Wxy(r1, r2) and Wyx(r1, r2).

We now focus on how to encode the auto- and cross-correlations, i.e., all the informa-
tion of the coherence matrix, into two complex random functions. We first obtain the 
polarization matrix p(v) for the fully coherent beam by using the three-channel plain-
text information S1(v) , S2(v) , and S3(v) . Two complex random functions for the partially 
coherent beam are then obtained by introducing random functions into the electric field 
of the fully coherent beam and letting the resulting spatially incoherent beam propagates 
through the optical system with response function H(r, v) , i.e.,

where

Above, r1,n(v) , r2,n(v) , r3,n(v) , and r4,n(v) are four independent random functions obey-
ing Gaussian statistics with zero-mean and unit-variance, C(v) = pxy(v)/

√

pxx(v)pyy(v) 
is a complex function that controls the anti-diagonal elements in the coherence matrix 
of the synthesized partially coherent beam [57, 58].

By adding all the complex random modes with Eq. (11), the partially coherent beam, 
with three-channel plaintext information encoded in its vectorial coherence structure, 

(11)W(r1, r2) =

N
∑

n=1

�nE
∗

n(r1)E
T
n (r2),

(12)En(r) = τx(r)Tx,n(r)êx + τy(r)Ty,n(r)êy,

(13)Tx,n(r) =

∫∫

Rx,n(v)
√

pxx(v)H(r, v)d2v,

(14)Ty,n(r) =

∫∫

Ry,n(v)
√

pyy(v)H(r, v)d2v,

(15)Rx,n(v) = [r1,n(v)+ ir2,n(v)]/
√

2,

(16)
Ry,n(v) = C∗(v)[r1,n(v)+ ir2,n(v)]/

√

2+
√

1− |C(v)|2[r3,n(v)+ ir4,n(v)]/
√

2.
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can be synthesized. The RMR method used in our work is quite similar to the protocol 
that using the rotating ground-glass disk. Nevertheless, our method is more compact 
and flexible since the complex random modes En(r) can be generated and modulated 
flexibly by a single spatial light modulator (SLM).

Experimental demonstration of three‑channel optical encoding and encryption

We next discuss how to experimental realize the three-channel optical encoding and 
encryption. Figure  2a shows our experimental setup. A fully coherent laser beam with 
wavelength � = 532 nm is emitted from a single-longitudinal-mode laser and is converted 
into a y-linearly polarized beam by a half-wave plate (HWP). After expanded by a beam 
splitter (BE1 ), the beam splits into two parts by a beam-splitter (BS) and then they go into 

Fig. 2 a Experimental setup for realizing the three-channel optical information encoding and decoding. 
b The target three-channel optical images. c A realization of the corresponding computer-generated 
holograms (CGH) loaded in the spatial light modulator (SLM) for generating the components of the field 
realization. d and e The experimentally measured instantaneous intensities for the x and y field components. f 
The experimental results of the coherence Stokes vector by spatial average over the instantaneous intensities. 
g The corresponding simulation results
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two different arms. The purpose of the Arm 1 in Fig.  2a is to encode the three-channel 
information into the coherence Stokes vector of a partially coherent light beam, while the 
purpose of Arm 2 is to create the reference beams for measuring the coherence properties 
of the synthesized partially coherent beam.

In Arm 1, the incident beam is first modulated by a phase-only SLM. The screen of the 
SLM is split into two halves that are used to realize the independent modulation of the x 
and y components for the complex random modes En(r) . The computer-generated holo-
gram (CGH) on the SLM is displayed dynamically to ensure the synthesis of partially coher-
ent light beam. Figure  2b and  c show an example for encoding the three-channel target 
images “1”, “2”, and “3” (for short, “123”) into the partially coherent beam. Figure 2c displays 
a realization of the corresponding dynamic CGHs loaded in the SLM. The details for creat-
ing the CGHs can be found in Supplementary material 1. After modulated by the SLM, the 
reflected light beam goes into a 4f common-path interferometric arrangement composed 
by thin lenses L 1 and L 2 with the same focal distance f = 250 mm. We note the distances 
between the SLM and L 1 , between L 2 and the Ronchi grating (RG) are both f, and the dis-
tance between the L 1 and L 2 is 2f. The SLM is located in the input plane (i.e., front focal 
plane of L 1 ) of the 4f system, while a two-pinhole filter is placed in the spatial-frequency 
plane (rear focal plane of L 1 ) of the system to select out two +1 diffraction orders from the 
SLM. The beams from two diffraction orders are converted into x and y polarization states, 
respectively, by two different HWPs. In the output plane (rear focal plane of L 2 ), two beam 
modes Ex,n(r)êx and Ey,n(r)êy are synthesized by a RG. By dynamically playing the CGHs 
on the SLM, the partially coherent beam, with three-channel target images encoded in its 
coherence Stokes vector, is synthesized.

We employ the Arm 2 in the Fig.  2a to generate coherent reference light beams. The 
y-polarization light beam incidents onto a neutral density filter (NDF), linear polarizer (LP), 
and a quarter-wave plate (QWP). The axis of the LP is set to be π/4 with respect to the x 
axis, while the fast axis of the QWP is set to be parallel or perpendicular to the polariza-
tion direction of the beam transmitted from LP. Thus, two π/4 linearly polarized beams 
with a π/2 phase difference can be generated, respectively. The reference beams are then 
expanded by a BE2 to produce the collimated beams of virtually uniform intensity distri-
bution. Two reference beams are interfered with the synthesized partially coherent beam, 
respectively, by a polarization beam splitter (PBS). The thin lens L 3 , positioned after the RG, 
is used to create a 4f imaging system for imaging the synthesized partially coherent source 
into the  CCD1 and  CCD2. The distances between the RG and L 3 , as well as between L 3 and 
CCD1(2) , are both 2f, where f = 250 mm is the focal distance of L 3 . We then record the 
instantaneous intensities for the x and y field components. The CCD1 and CCD2 are con-
trolled by a direct-digital-synthesis (DDS) signal generator, used to simultaneously capture 
the intensities of the x and y components of the composite random field. With the principle 
of the generalized Hanbury Brown and Twiss experiment, the real and imaginary parts of 
the coherence matrix can be obtained by [54]

(17)W ′

αβ(r1, r2) =

〈

IC1α (r1)I
C1
β (r2)

〉

−

〈

[

Iα(r1)+ IR1α (r1)
]

[

Iβ(r2)+ IR1β (r2)
]〉

2
√

IR1α (r1)I
R1
β (r2)

,
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where the prime and double-prime denote the real and imaginary parts, respectively, 
IC1α (r) and IC2α (r) denote the α component intensities for the fields composed by the par-
tially coherent beam and two reference beams, respectively, Iα(r) is the α component 
intensity for the partially coherent field, while IR1α (r) and IR2α (r) are the α component 
intensities for the first and the second reference beams. The angle brackets in Eqs. (17) 
and (18) denote the ensemble average. We note that in the experiment, the ensemble 
average can be replaced with the spatial average over a single field realization if the par-
tially coherent light beam is synthesized by a Fourier or a fractional Fourier transform 
system [28, 59, 60], i.e., the response function H(r, v) obeys Fourier or fractional Fourier 
transform form. The details for the generalized Hanbury Brown and Twiss experiment 
are shown in Supplementary material 1. After the complex coherence matrix is meas-
ured, the coherence Stokes vector can be obtained by using Eq. (9).

Figure 2d and e show the measured instantaneous intensities in the case when the tar-
get images “123” are encoded in the partially coherent beam, while Fig.  2f shows the 
three elements of the coherence Stokes vector by the spatial average over these instanta-
neous intensities. The corresponding simulation results for the coherence Stokes vector 
are shown in Fig. 2g. It is found that the measured coherence Stokes vector is consistent 
well with the simulation. We will show in the next section that by the inverse transform 
of the measured coherence Stokes vector, the encoded three-channel images can be well 
reconstructed.

Results and discussion
Three‑channel optical images encoding

According to the relation in Eq.  (10), once the elements of the coherence Stokes vec-
tor Sj(r1, r2) are determined, all the information (including the shapes and positions) on 
the encoded three-channel target images can be recovered by using the inverse trans-
form system whose response function is H−1(r, v) . We first study three-channel optical 
images encoding with a Fourier transform system. Therefore, by evaluating an inverse 
Fourier transform of the measured coherence Stokes vector, the three-channel optical 
images S1(v) , S2(v) , and S3(v) can be reconstructed. In Fig. 3b–d, we show the recovered 
three-channel images “123” by the inverse Fourier transform of the measured coher-
ence Stokes vector shown in Fig. 2f. The original target images are shown in Fig. 3a. The 
enlarged images are shown in Fig. 3e–g. We find that, indeed, both the shape and the 
position of the target images are well recovered from the measured coherence Stokes 
vector. To verify the flexibility of our method, we change the three-channel target images 
to the capital letters “ABC” [see in Fig.  3h] and to the “circle, square, and triangle” 
shapes [see in Fig. 3l], respectively. The experimentally reconstructed images are shown 
in Fig. 3i–k and m–o. The corresponding simulation results are shown in each inset of 
the figures. The experimental and simulation results verify that the three-dimensional 
coherence Stokes vector, indeed, can be viewed as an effective information carrier for 
realizing three-channel optical encoding.

(18)W ′′

αβ(r1, r2) = −

〈

IC1α (r1)I
C2
β (r2)

〉

−

〈[

Iα(r1)+ IR1α (r1)
][

Iβ(r2)+ IR2β (r2)
]〉

2
√

IR1α (r1)I
R2
β (r2)

,
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Color image encoding

Next, we demonstrate the color image encoding with partially coherent vector beam. 
The information of three primary-color-channels for a color image is first encoded into 
three elements of the coherence Stokes vector, respectively, by engineering the dynamic 
CGHs in the SLM. We then measure the complex coherence Stokes vector by the gen-
eralized Hanbury Brown and Twiss experiment. Through the inverse Fourier transform, 
the three primary-color-channels and therefore the color image can be recovered. In 
Fig. 4 we display the recovered results of four different target color images. The left pan-
els of Fig. 4 show the target images, i.e., the colorful letters “RGB”, a color windmill, a 
color peking opera mask, and our lab logo. The corresponding recovered images includ-
ing the separate primary-color-channels are shown in four right panels of Fig.  4. The 
numerical simulation results are displayed in the inset of each figures. We find the color 
images is recovered, however with disturbance in the recovered color images. We note 

Fig. 3 Experimental results of the recovered three-channel optical images from the measured coherence 
Stokes vectors. a, h, and l are the target images. b–g The recovered images “123” and their enlarged images. 
i–k The recovered images “ABC”. m–o The recovered images of “circle, square, and triangle” shapes. The 
corresponding simulation results for the recovered three-channel images are shown in the inset (within the 
yellow dashed circle)
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the disturbance is due to that in our experiment only a single realization of the measured 
intensities is used to calculate the complex coherence Stokes vector, i.e., in Eqs. (17) and 
(18) the ensemble average is replaced with the spatial average over a single realization.

By increasing the number of the realizations in calculating the coherence Stokes vec-
tor, the recovered image quality can be further improved. In Fig. 5a–j and k–t, we show 
the recovered windmill and peking opera mask with different number N of intensities 
realizations. We can find that the recovered image quality can be improved gradually 
with the increase of N. The quality of the recovered color images is nearly perfect com-
paring to the target color images when N = 10 . We remark here that by further increase 
of the number of realizations used in calculating the coherence Stokes vector, the qual-
ity of the recovered image can be further improved. The quality of the recovered image 
depends also on the complexity of the image itself, i.e., more complex structure of the 
image, more number of the realizations is required to recover well the encoded image 
(for example, see in Supplementary Fig. S1 for the recovery of our lab logo).

Robust property

The advantage of our three-channel optical information encoding based on the coher-
ence Stoke vector engineering is that the system is effectively resistant to the distur-
bances induced by the complex environments, such that when the partially coherent 

Fig. 4 Experimental results of the recovered color images from the measured coherence Stokes 
vectors. a, f, k, and p are the target images. b–e The recovered colorful letters “RGB” and its the separate 
primary-color-channels. g–j The recovered color windmill. l–o The recovered color peking opera mask. q–t 
The recovered lab logo. The corresponding simulation results for the recovered color images are shown in the 
inset (within the yellow dashed circle)
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vector beam, with three-channel information encoded in its coherence Stokes vector, 
suffers random noise, the encoded information can still be well recovered. Here, we 
demonstrate such robustness by introducing white noise in the partially coherent beam. 
In our experiment, the white noise with different strengths are added into the Ex,n(r) and 
Ey,n(r) components of the complex random modes En(r) . We note the complex random 
modes En(r) are used to synthesize the partially coherent beam by the RMR method. 
Figure  6 shows the experimental results for the reconstructed three-channel optical 
images “123” and color “windmill” from the partially coherent vector beams with differ-
ent signal-to-noise ratios (SNRs). The SNR is defined as [61]

where I signal and I total denote the intensity of the complex random mode En(r) with and 
without introducing the white noise, respectively. The measured instantaneous inten-
sities of En(r) with SNR = −0.77 dB, −6.53 dB, and −13.47 dB for the partially coher-
ent vector beams with three-channel images “123” encoded inside are displayed in 
Fig.  6a, e, and  i, respectively. The respective ratios of signal power to total power are 
45.60 %, 18.20 %, and 4.30 %, respectively. Figure 6b–d, f–h, and g–l show the experi-
mental results of the recovered three-channel images under the three different SNRs. It 
can be found that the three-channel images “123” can be reconstructed well in all three 
cases. The color “windmill” and its three primary-color-channels are recovered in the 

(19)SNR = 10log10

∫

Isignald2r
∫

Itotald2r
,

Fig. 5 Experimental results of the recovered color images with variable number N of intensities realizations. 
a–j The recovered color windmill. k–t The recovered color peking opera mask
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noisy environments with SNR = −0.17 dB, −6.92 dB, and −13.68 dB, respectively. The 
corresponding signal power ratios to the total power are 49.03 %, 16.89 %, and 4.11 %, 
respectively. The experimental recovered results are shown in Fig.  6m–x. The experi-
mental results are consistent well with our predictions (see in simulation results in Sup-
plementary Fig. S2) that the color images can also be recovered with high quality in the 
noisy environments. Our experimental and simulation results verified that our protocol 
is quite insensitive to the environmental noise. Thus, the two-point coherence Stokes 
vector of a partially coherent light beam can be regarded as a robust information carrier 
for three-dimensional optical encoding.

Three‑channel optical encryption

Finally, our protocol can significantly enhance information security for optical informa-
tion encoding, specifically enabling three-channel optical encryption by customizing the 
encoding rules of the response function H(r, v) . We would like to emphasize here that 
our protocol is adaptable to any encoding system, similar to those utilized in previous 
optical encryption protocols with fully coherent light. This flexibility arises from the fact 
that the response function H(r, v) can be designed arbitrarily. To illustrate the feasibil-
ity of our three-channel optical encryption, we present an example in which the optical 
encryption system performs a fractional Fourier transform with a controllable fractional 
order. The corresponding transfer function is expressed as [13, 28]:

where A0 = −icscϕE/�f  and ϕE = pEπ/2 with pE being the fractional order of the frac-
tional Fourier transform. The value of pE serves as an encryption key for the protocol, 
with pE ∈ (0, 1] ; setting pE = 1 reduces it to the ordinary Fourier transform. Following 
from Eq. (10), the ciphertext can be expressed as:

(20)H(r, v) = A0 exp

[

iπ

�f
(cotϕEv

2
− 2cscϕEv · r + cotϕEr

2)

]

,

Fig. 6 Robustness of the recovered images in noisy environments. a, e, and i The measured instantaneous 
intensities of En(r) with SNR = −0.77 dB, −6.53 dB, and −13.47 dB for the partially coherent vector 
beams with three-channel images “123” encoded inside. b–d, f–h, and g–l The corresponding recovered 
three-channel images in the noisy environments. m–p, q–t, and u–x The recovered color images in the noise 
environments with SNR = −0.17 dB, −6.92 dB, and −13.68 dB, respective
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where Sj(v) with j ∈ (1, 2, 3) denote the three-channel plaintext information and 
�r = r1 − r2 . The three-channel plaintext information is now encoded into the coher-
ence Stokes vector of the partially coherent beam via the fractional Fourier transform 
system. In the experiment, such the partially coherent beam can still be synthesized 
with the RMR method. We only require to modulate the dynamic CGHs in the SLM 
by following Eqs. (13) and (14). After the coherence Stokes vector being measured, the 
encoded three-channel information can be recovered by the inverse fractional Fourier 
transform, i.e.,

Above, SRj (v) denotes the recovered three-channel information, SRj (r1, r2) denotes the 
measured coherence Stokes vector, and ϕR = pRπ/2 with pR serving as a decoding key. It 
is noted that only when the measured SRj (r1, r2) matches the ciphertext Sj(r1, r2) , and the 
decoding key pR = pE , the encoded information can be correctly recovered.

As a proof-of-principle experiment, the encryption key, i.e., the fractional order of 
the transform system is set to be pE = 0.80 . Figure 7 depicts our experimental decryp-
tion results for the three-channel images “123” and the color “windmill”. Figure 7a–c 
and j–m show the recovered results with correct decryption key, i.e., pR = 0.80 , while 
Fig.  7d–f and  n–q show the recovered results with incorrect decryption key, i.e., 
pR = 1.00 . It can be inferred from the recovered results that the target images can 
be well recovered only when the encryption and decoding keys match well. Other-
wise, the recovered images cannot be recognized. It is emphasized that our decryp-
tion results are quite sensitive to the value of pR (see in Supplementary Fig. S3). We 
also carry out the experiment by introducing the white noise in the partially coherent 

(21)Sj(r1, r2) = A2
0

∫

Sj(v) exp

[

iπ

�f

(

2cscϕEv ·�r − cotϕEr
2
1 + cotϕEr

2
2

)

]

d2v,

(22)

SRj (v) =

∫∫

SRj (r1, r2) exp

[

−

iπ

�f
(2cscϕR�r · v − cotϕRr

2
1 + cotϕRr

2
2)

]

d2r1d
2r2.

Fig. 7 Three-channel optical encryption with coherence Stokes vector. a–c and j–m show the recovered 
three-channel images and color image with correct decryption key, i.e., pR = 0.80 . d–f and n–q show the 
recovered three-channel images and color image with incorrect decryption key, pR = 1.00 . g–i and r–u show 
the recovered images in the noise environments with SNR = −13.40 dB and SNR = −13.61 dB, respectively
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beams. For the noisy beams, the SNR = −13.40 dB and SNR = −13.61  dB, respec-
tively. The recovered images are shown in Fig. 7g–i and r–u. It is noted that the recov-
ered images are nearly unaffected by the noisy environment, indicating the robustness 
of the three-channel optical encryption with partially coherent vector light.

Conclusions
In summary, we have introduced a novel approach for three-channel optical encod-
ing and encryption by engineering a single partially coherent vector light beam. 
The three-channel information carried by the polarization Stokes vector of a fully 
coherent light beam is initially encoded into the three components of the two-point 
coherence Stokes vector of a partially coherent beam via the generalized van Cittert–
Zernike theorem. Subsequently, the encoded three-channel information is recovered 
by measuring the coherence Stokes vector through the recently introduced general-
ized Hanbury Brown–Twiss experiment. The advanced protocol exhibits several key 
advantages, including increased resilience to disturbances induced by complex envi-
ronments and enhanced security for the encoding information through the introduc-
tion of additional quantities as encryption keys in the encoding system. In addition, 
we have shown that by associating the three independent components of the coher-
ence Stokes vector with three primary color channels, the coherence Stokes vector 
can be flexibly utilized for color image encoding and encryption. The feasibility of 
our protocol has been demonstrated through a proof-of-principle experiment and 
numerical simulation. Both results affirmed that the encoded three-channel optical 
images and color images can be successfully decoded or decrypted even in the pres-
ence of high levels of random noise during the recovery process. Our findings suggest 
that partially coherent light engineering may find applications in multi-target image 
encryption and high-security, multi-channel optical communication in complex 
environments.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s43074- 024- 00126-7.

Supplementary Material 1. 

Acknowledgements
Not applicable.

Authors’ contributions
Yahong Chen, Fei Wang, and Yangjian Cai conceived the original idea and designed the experiment. Yonglei Liu, Zhen 
Dong, Yimeng Zhu, Haiyun Wang conducted the experiment. All authors analyzed their experimental results and con-
tributed to writing and proofreading the manuscript. Yangjian Cai supervised the overall project. The authors read and 
approved the final manuscript.

Authors’ information
Not applicable.

Funding
National Key Research and Development Program of China (2022YFA1404800, 2019YFA0705000); National Natural Sci-
ence Foundation of China (11974218, 12192254, 12274310, 12274311, 92250304, 12347114); Jiangsu Funding Program 
for Excellent Postdoctoral Talent (2023ZB185).

Availability of data and materials
The experimental data that support the works of this study are available from the corresponding authors on reasonable 
request.

https://doi.org/10.1186/s43074-024-00126-7


Page 17 of 18Liu et al. PhotoniX             (2024) 5:8  

Declarations

Ethics approval and consent to participate
There is no ethics issue for this paper.

Consent for publication
All authors agreed to publish this paper.

Competing interests
The authors declare no competing financial interests.

Received: 18 January 2024   Revised: 27 February 2024   Accepted: 11 March 2024

References
 1. Rubinsztein-Dunlop H, Forbes A, Berry MV, et al. Roadmap on structured light. J Opt. 2017;19:013001.
 2. Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photon. 2021;15:253.
 3. Milione G, Nguyen TA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode informa-

tion for optical communication. Opt Lett. 2015;40:4887–90.
 4. Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett. 

2015;40:4843–6.
 5. Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data 

storage. Sci Bull. 2020;65:2072–9.
 6. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A, Ramachandran S. Terabit-scale orbital angular 

momentum mode division multiplexing in fibers. Science. 2013;340:1545.
 7. Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 

2020;1:13.
 8. Larocque H, D’Errico A, Ferrer-Garcia MF, Carmi A, Cohen E, Karimi E. Optical framed knots as information carriers. 

Nat Commun. 2020;11:5119.
 9. Kong L, Zhang W, Li P, Guo X, Zhang J, Zhang F, Zhao J, Zhang X. High capacity topological coding based on nested 

vortex knots and links. Nat Commun. 2022;13:2705.
 10. Chao H, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl. 2022;11:1–17.
 11. Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H. Different channels to transmit information in 

scattering media. PhotoniX. 2023;9:3629.
 12. Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett. 

1995;20:767–9.
 13. Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier 

domain. Opt Lett. 2000;25:887–9.
 14. Liu S, Guo C, Sheridan JT. A review of optical image encryption techniques. Opt Laser Technol. 2014;57:327–42.
 15. Javidi B, Carnicer A, Yamaguchi M, et al. Roadmap on optical security. J Opt. 2016;18:083001.
 16. Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photon. 

2019;14:102–8.
 17. Qu G, Yang W, Song Q, Liu Y, Qiu C-W, Han J, Tsai D-P, Xiao S. Reprogrammable meta-hologram for optical encryp-

tion. Nat Commun. 2020;11:5484.
 18. Guo X, Zhong J, Li B, Qi S, Li Y, Li P, Wen D, Liu S, Wei B, Zhao J. Full-color holographic display and encryption with 

full-polarization degree of freedom. Adv Mater. 2022;34:2103192.
 19. Ouyang M, Yu H, Pan D, Wan L, Zhang C, Gao S, Feng T, Li Z. Optical encryption in spatial frequencies of light fields 

with metasurfaces. Optica. 2022;9:1022–8.
 20. Guo X, Li P, Zhong J, Wen D, Wei B, Liu S, Qi S, Zhao J. Stokes meta-hologram toward optical cryptography. Nat Com-

mun. 2022;13:6687.
 21. Goodman JW. Speckle phenomena in optics: theory and applications. Roberts and Company Publishers; 2007.
 22. Andrews LC, Phillips RL. Laser Beam Propagation through Random Media. 2nd ed. SPIE; 2005.
 23. Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon. 

2012;6:355–9.
 24. Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A. 2014;31:2038–45.
 25. Peng Y, Choi S, Kim J, Wetzstein G. Speckle-free holography with partially coherent light sources and camera-in-the-

loop calibration. Sci Adv. 2021;7:5040.
 26. Zhu L, Soldevila F, Moretti C, dArco A, Boniface A, Shao X, de Aguiar HB, Gigan S. Large field-of-view non-invasive 

imaging through scattering layers using fluctuating random illumination. Nat Commun. 2022;13:1447.
 27. Chen Y, Ponomarenko SA, Cai Y. Experimental generation of optical coherence lattices. Appl Phys Lett. 

2016;109:061107.
 28. Peng D, Huang Z, Liu Y, Chen Y, Wang F, Ponomarenko SA, Cai Y. Optical coherence encryption with structured 

random light. PhotoniX. 2021;2:6.
 29. Yu J, Zhu X, Wang F, Chen Y, Cai Y. Research progress on manipulating spatial coherence structure of light beam and 

its applications. Prog Quantum Electron. 2023;91:100486.
 30. Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation 

functions: a review [invited]. J Opt Soc Am A. 2014;31:2083–96.
 31. Liang C, Wu G, Wang F, Li W, Cai Y, Ponomarenko SA. Overcoming the classical Rayleigh diffraction limit by control-

ling two-point correlations of partially coherent light sources. Opt Express. 2017;25:28352–62.



Page 18 of 18Liu et al. PhotoniX             (2024) 5:8 

 32. Jin Y, Wang H, Liu L, Chen Y, Wang F, Cai Y. Orientation-selective sub-Rayleigh imaging with spatial coherence lat-
tices. Opt Express. 2022;30:9548–61.

 33. Liu Y, Chen Y, Wang F, Cai Y, Liang C, Korotkova O. Robust far-field imaging by spatial coherence engineering. Opto-
Electron Adv. 2021;4:210027.

 34. Liu Y, Zhang X, Dong Z, Peng D, Chen Y, Wang F, Cai Y. Robust far-field optical image transmission with structured 
random light beams. Phys Rev Appl. 2022;17:024043.

 35. Yu J, Xu Y, Lin S, Zhu X, Gbur G, Cai Y. Longitudinal optical trapping and manipulating Rayleigh particles by spatial 
nonuniform coherence engineering. Phys Rev A. 2022;106:033511.

 36. Chen Y, Wang F, Cai Y. Partially coherent light beam shaping via complex spatial coherence structure engineering. 
Adv Phys X. 2022;7:2009742.

 37. Lin R, Chen M, Liu Y, Zhang H, Gbur G, Cai Y, Yu J. Measuring refractive indices of a uniaxial crystal by structured light 
with non-uniform correlation. Opt Lett. 2021;46:2268–71.

 38. Li W, Wu D, Chen Y, Cai Y, Korotkova O, Wang F. Sensing azimuthally symmetric objects by a single-pixel detector via 
COAM matrix. Appl Phys Lett. 2023;122:251106.

 39. Zhao X, Wang Z, Lu X, Zhang H, Zhu J, Gao J, Zhan Q, Cai Y, Zhao C. Ultrahigh precision angular velocity measure-
ment using frequency shift of partially coherent beams. Laser Photonics Rev. 2023;17:2300318.

 40. Korotkova O, Wolf E. Generalized Stokes parameters of random electromagnetic beams. Opt Lett. 2005;30:198–200.
 41. Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University; 1995.
 42. Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007;32:3531–3.
 43. Gori F, Ramírez-Sánchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. J Opt A. 

2009;11:085706.
 44. Chen Y, Wang F, Liu L, Zhao C, Cai Y, Korotkova O. Generation and propagation of a partially coherent vector beam 

with special correlation functions. Phys Rev A. 2014;89:013801.
 45. Dong Z, Chen Y, Wang F, Cai Y, Friberg AT, Setälä T. Encoding Higher-Order Polarization States into Robust Partially 

Coherent Optical Beams. Phys Rev Appl. 2022;18:034036.
 46. Dong Z, Zhu Y, Liu Y, Wang F, Cai Y, Setälä T, Chen Y. Compact generation of light beams carrying robust higher-order 

Poincaré polarization states. Appl Phys Lett. 2023;122:221101.
 47. Yuan B, Dong Z, Liu Y, Wang F, Cai Y, Chen Y. Robust high-order polarization arrays via vectorial spatial-coherence 

engineering. Phys Rev Appl. 2023;20:054031.
 48. Gil JJ, Ossikovski R. Polarized Light and the Mueller Matrix Approach. 2nd ed. Boca Raton: CRC Press; 2022.
 49. Setälä T, Tervo J, Friberg AT. Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic 

degree of coherence. Opt Lett. 2006;31:2669–71.
 50. Setälä T, Tervo J, Friberg AT. Stokes parameters and polarization contrasts in Young’s interference experiment. Opt 

Lett. 2006;31:2208–10.
 51. Tervo J, Setälä T, Roueff A, Réfrégier P, Friberg AT. Two-point Stokes parameters: interpretation and properties. Opt 

Lett. 2009;34:3074–6.
 52. Tervo J, Setälä T, Turunen J, Friberg AT. Van Cittert-Zernike theorem with Stokes parameters. Opt Lett. 

2013;38:2301–3.
 53. Huang Z, Chen Y, Wang F, Ponomarenko SA, Cai Y. Measuring complex degree of coherence of random light fields 

with generalized Hanbury Brown-Twiss experiment. Phys Rev Appl. 2020;13:044042.
 54. Dong Z, Huang Z, Chen Y, Wang F, Cai Y. Measuring complex correlation matrix of partially coherent vector light via 

a generalized Hanbury Brown-Twiss experiment. Opt Express. 2020;28:20634–44.
 55. Voelz D, Xiao X, Korotkova O. Numerical modeling of Schell-model beams with arbitrary far-field patterns. Opt Lett. 

2015;40:352–5.
 56. Liu Y, Dong Z, Wang F, Cai Y, Chen Y. Experimental synthesis of higher-order Poincaré sphere beam array with spatial 

coherence engineering. Appl Phys Lett. 2023;122:161106.
 57. Hyde MW IV. Generating electromagnetic Schell-model sources using complex screens with spatially varying auto-

and cross-correlation functions. Res Phys. 2019;15:102663.
 58. Zhu X, Yu J, Chen Y, Wang F, Cai Y. Generation of Stochastic Structured Light Beams with Controllable Beam Param-

eters. ACS Photon. 2023;10:2272–9.
 59. Takeda M, Wang W, Naik DN, Singh RK. Spatial statistical optics and spatial correlation holography: a review. Opt Rev. 

2014;21:849–61.
 60. Peng D, Zhang X, Liu Y, Zhu Y, Chen Y, Wang F, Cai Y. Imaging through random scatterer with spatial coherence 

structure measurement. Front Phys. 2022;9:828487.
 61. Kellman P, McVeigh E. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson 

Med. 2005;54:1439–47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light
	Abstract 
	Introduction
	Principle
	Coherence Stokes vector and three-channel optical encryption
	Synthesis of partially coherent vector beam for three-channel optical encoding
	Experimental demonstration of three-channel optical encoding and encryption

	Results and discussion
	Three-channel optical images encoding
	Color image encoding
	Robust property
	Three-channel optical encryption

	Conclusions
	Acknowledgements
	References


