CORRECTION Open Access

Correction: Multi-focus light-field microscopy for high-speed large-volume imaging

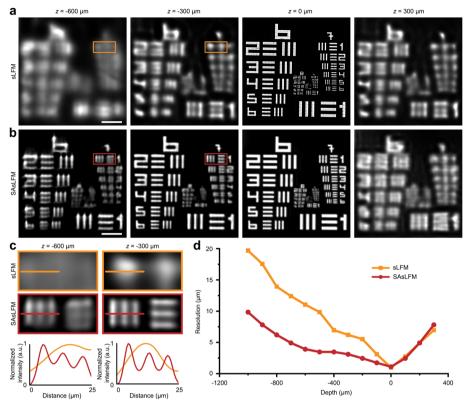
Yi Zhang^{1,2†}, Yuling Wang^{1,2†}, Mingrui Wang^{2,3,4,5}, Yuduo Guo^{2,3,4}, Xinyang Li^{1,2,3,6}, Yifan Chen^{1,2}, Zhi Lu^{1,2}, Jiamin Wu^{1,2,4,5*}, Xiangyang Ji^{1,2*} and Qionghai Dai^{1,2,4,5*}

[†]Yi Zhang and Yuling Wang contributed equally to this work.

The original article can be found online at https://doi.org/10.1186/s43074-022-00076-y.

*Correspondence: wujiamin@tsinghua.edu. cn; xyji@tsinghua.edu.cn; qhdai@tsinghua.edu.cn

¹ Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China ² Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China ³ Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China ⁴ Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China ⁵ IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China ⁶ Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China


Correction: PhotoniX 3, 30 (2022) https://doi.org/10.1186/s43074-022-00076-y

In the original publication of this article [1], there is a problem with the display of the Fig. 3 due to the incompatibility of image format. It needs to be updated with the correct one.

The original article [1] was updated.

Zhang et al. PhotoniX (2022) 3:31 Page 2 of 2

Fig. 3 Reconstruction results of a USAF-1951 resolution target located at different depths. **a-b** Comparisons of the reconstruction results of USAF-1951 resolution target obtained by sLFM and SAsLFM. The raw light-field images were obtained under a 10 × /0.28NA objective with a 15 × 15 scanning trajectory. While the high-resolution range of SAsLFM is comparable to that of sLFM on one side of the native focal plane, it has an obvious extension on the other side. **c** Zoom-in areas marked by the boxes in (**a**) and (**b**). SAsLFM is able to reveal the details that are corrupted in sLFM at the out-of-focus layers. The intensity profiles along the red and orange lines are shown on the bottom. **d** Resolutions of sLFM and SAsLFM at different axial positions. In a large axial range of ~ 1 mm, SAsLFM preserves finer details than traditional sLFM. Scale bars: 50 μm

Published online: 29 December 2022

Reference

 Zhang Y, Wang Y, Wang M, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3:30. https://doi.org/10.1186/s43074-022-00076-y.