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Introduction
Morphological and functional dynamics in three-dimensional (3D) organisms, such 
as neuronal calcium transients [1, 2], vascular transport [3–5], embryo development 
[6–8], and molecular signaling networks [9, 10], necessitate high-speed volumetric 
imaging techniques to resolve these complexities across large spatiotemporal scales 
[11, 12]. To meet the pressing demand, various efforts have been invested during the 
past decades to develop fast and high-quality volumetric imaging methods [13–16], 
among which light-field microscopy (LFM) [17] is an attractive candidate due to its 
high parallelization and low phototoxicity. By inserting a microlens array (MLA) 
into the detection path, LFM encodes the high-dimensional information of a large 
volume in a snapshot, providing a powerful capability of high-speed 3D imaging 

Abstract 

High-speed visualization of three-dimensional (3D) processes across a large field of 
view with cellular resolution is essential for understanding living systems. Light-field 
microscopy (LFM) has emerged as a powerful tool for fast volumetric imaging. How-
ever, one inherent limitation of LFM is that the achievable lateral resolution degrades 
rapidly with the increase of the distance from the focal plane, which hinders the appli-
cations in observing thick samples. Here, we propose Spherical-Aberration-assisted 
scanning LFM (SAsLFM), a hardware-modification-free method that modulates the 
phase-space point-spread-functions (PSFs) to extend the effective high-resolution 
range along the z-axis by ~ 3 times. By transferring the foci to different depths, we 
take full advantage of the redundant light-field data to preserve finer details over an 
extended depth range and reduce artifacts near the original focal plane. Experiments 
on a USAF-resolution chart and zebrafish vasculatures were conducted to verify the 
effectiveness of the method. We further investigated the capability of SAsLFM in 
dynamic samples by imaging large-scale calcium transients in the mouse brain, track-
ing freely-moving jellyfish, and recording the development of Drosophila embryos. In 
addition, combined with deep-learning approaches, we accelerated the three-dimen-
sional reconstruction of SAsLFM by three orders of magnitude. Our method is compat-
ible with various phase-space imaging techniques without increasing system complex-
ity and can facilitate high-speed large-scale volumetric imaging in thick samples.
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[18–20]. However, similar to common microscopy techniques, LFM still suffers from 
the tradeoff between spatial-temporal resolution and the volume coverage, which 
impedes observing subtle details in large-scale volumes.

Several methods have been proposed to alleviate this limitation. A bifocal lenslet 
array [21] and confocal LFM [22] can extend the high-resolution range along the 
z-axis at the cost of system complexity, resolution, or speed. Wavefront coding has 
been explored to address the non-uniform resolution limitation [23], but the cor-
responding volume coverage is stilled restricted to a shallow range. Moreover, the 
achievable resolutions of these methods are much lower than the diffraction limit, 
due to the intrinsic tradeoff of spatial and angular resolutions. Scanning LFM 
(sLFM) with high-speed drifting of the image plane [24] bypasses the limitation and 
improves the spatial resolution near the focal plane up to the diffraction limit, but 
the lateral resolution still degrades rapidly with the increase of the defocus distance. 
Therefore, high-speed high-resolution imaging across a large depth of field remains 
a challenging problem for broad biological applications.

To address this problem, we propose a method termed as Spherical-Aberration-
assisted sLFM (SAsLFM) by achieving simultaneous multi-focus light-field detection 
with the aid of additional spherical aberrations without complex hardware modifica-
tions. We reason that sLFM, as an aperture-partitioning method, has the potential 
to modulate the phase of each sub-aperture separately to extend the high-resolution 
range of the system. Spherical aberration is usually not preferred in optical imag-
ing since it will make the light rays at the outer part of the lens and the central part 
of the lens focus on different axial regions, which is easy to generate and imple-
ment in the optical path [25]. Although it deteriorates image formation in wide-field 
microscopy, it can be used to generate multi-focus along the optical axis in sLFM by 
directly transferring the foci of phase-space point-spread functions (PSFs) to differ-
ent depths. Merging all the information during iterations of the phase-space recon-
struction can produce a large-scale volume with high resolution over an extended 
axial range. We demonstrate the principle of our method through numerical simula-
tions and verify the improvement experimentally by imaging a USAF-1951 resolu-
tion target placed at various depths and the entire vasculature system of zebrafish 
larvae. The results show that our method provides a conspicuous improvement in 
high-resolution coverage. To demonstrate the versatility of SAsLFM, we imaged vari-
ous large-scale biological dynamics. We monitored the activities in awake head-fixed 
mice and successfully revealed the calcium response with a depth range of ~ 300 μm 
with a high signal-to-background ratio. We also achieved 3D tracking of the folding 
tentacles of freely-swimming jellyfish at 22 Hz in a volume of ~ 2000 × 2000 × 500 
μm3 and observed the developmental dynamics of Drosophila embryos over a dura-
tion of ~ 6.5 h. All the experimental results indicate that our method could visualize 
fast biological activities with high resolution in a 3D space spanning a large depth of 
range. Moreover, as learning-based approaches become a generic solution for data 
analysis and image restoration [26], we investigated the ability of deep learning to 
automatically extract and reveal high-resolution features from SAsLFM data, and 
successfully achieved a high reconstruction throughput of 167 volumes per second.



Page 3 of 20Zhang et al. PhotoniX             (2022) 3:30 

Results
SAsLFM approach

Our method can be easily applied to various phase-space imaging schemes. For dem-
onstration, we chose unfocused sLFM with an MLA inserted at the native image plane 
(Fig. 1a). A piezo tilt platform was placed at the conjugated pupil plane to shift the image 
plane by small intervals (typically, 1/3 or 1/5 of the pitch size of each microlens) to 
increase the spatial sampling rate. An image sensor was placed at the focal plane of the 
MLA with each microlens covering N × N sensor pixels. Based on the periodic scanning 
path, pixels with the same position relative to the center of each microlens can be rea-
ligned together to form an intensity projection I(x, u), where x and u are 2D spatial and 
angular coordinates, respectively. The I(x, u), referred to as a sub-aperture component in 
phase space, represents an intensity projection of the 3D sample from a specific perspec-
tive (Fig. 1a). The I(x, u) can be directly calculated by ∑zX(x, z) ⊗ W(z, x, u), where z is 

Fig. 1  Principle of SAsLFM. a Schematic of SAsLFM setup. A petri dish was filled with water to introduce a 
large spherical aberration into the optical path. A microlens array (MLA) was inserted at the native image 
plane, and a camera was placed at the back focal plane of the MLA. The sweep of the piezo tilt platform 
and the trigger of the camera were synchronized to obtain a sequence of light-field images, each of which 
was shifted by a small interval. Based on the scanning path (3 × 3 scanning period for demonstration), 
pixels having the same relative position to the center of each microlens were rearranged together to form 
sub-aperture components. b Illustration of sub-aperture PSFs modification. The light rays passing through 
different sub-apertures change their original directions when entering the water and ultimately focus at 
various depths (20 × /0.5NA sLFM and SAsLFM systems with each microlens covering 9 × 9 pixels are 
used for demonstration). Maximum intensity projections (MIPs) of the 81 sub-aperture PSFs of traditional 
sLFM and SAsFLM at the depth of − 300 μm are shown on the right for comparison. After the modulation 
of the spherical aberration, the intensity distributions of sub-aperture PSFs are changed. c Rearranged 
sub-aperture components of the sLFM data are divided into several groups according to the corresponding 
sub-aperture positions. Components within the same group are marked with the same color and contain 
the high-resolution content acquired from a specific depth range. Our phase-space reconstruction algorithm 
can fully exploit the details contained in the sub-aperture data and merge them during iterations to reveal a 
large-scale volume with high resolution
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the axial coordinate in object space, W(z, x, u) represents the sub-aperture PSF along the 
same direction, X(x, z) is the 3D sample and ⊗ denotes convolution operation. The for-
mula reveals that sub-aperture components are mutually independent (Supplementary 
Note 1). By introducing a phase modulation at the pupil plane, the focal plane of each 
sub-aperture component can be transferred to a different depth. Considering the cross-
talk between adjacent sub-aperture components and the artifact induced by wavefront 
discontinuity at the pupil plane, a smooth phase such as spherical aberration is thus 
preferred. By increasing the refractive index mismatch between the sample buffer and 
the immersion medium of the objective, a spherical aberration can be easily induced. 
For example, we can fill a petri dish with water and then image the sample with a dry 
objective (Fig.  1b). Depending on the imaging conditions, alternative solutions with a 
higher refractive index such as immersion oil (n = 1.51) can be used to introduce a larger 
spherical aberration into the optical path. The approach described above also produces 
other types of aberrations, which are not as significant as spherical aberration and have 
a negligible impact on the final performance due to the digital adaptive optics (DAO) 
[24] capability. As shown in Fig. 1b, with an ideal centrosymmetric spherical aberration 
imposed at the pupil plane, the focus depth of each view component is determined by 
the relative distance between the position of the sub-aperture and the center of the pupil 
plane. The axial high-resolution position of each sub-aperture component is offset from 
each other and the energy distribution is redistributed. By merging all the information 
through appropriate reconstruction algorithms, a high-resolution large-scale volume 
with an extended DOF can be obtained (Fig. 1c).

To quantitatively analyze the impact of spherical aberration, we numerically simulated 
the beam propagation of a 20 × /0.5NA sLFM system with each microlens covering 1313 
pixels. We first added different levels of spherical aberration to the pupil plane and the 
corresponding spatial PSFs H(z,x) with many zero-value elements are shown in Fig. 2a. 
The relationship between the appended phase pattern and the spatial PSF shape is 
implicit, making it difficult to quantitatively evaluate the increase of DOF directly from 
H. We then rearranged the images in phase-space to form sub-aperture PSFs along dif-
ferent directions and typical components (u = (3, 3); (5, 5); (7, 7)) are shown in Fig. 2b. 
Without spherical aberration, all the sub-aperture PSFs focus at the same depth and 
the DOF is just ~ 50 μm, which is consistent with the previous study [27] The dispar-
ity of focus depth between different sub-apertures components increases as the spheri-
cal aberration becomes larger (Supplementary Fig. 1). When the Zernike coefficients of 
the primary spherical aberration are increased to 5 and 10, the DOF reaches ~ 120 μm 
and ~ 185 μm, respectively (Fig. 2b). Note that the DOF has different degrees of expan-
sion on either side along the optical axis. For simplicity, the axial focal position of the 
central component of each method is denoted as the native focal plane in the following 
description. We next investigated other factors that may affect the extension of DOF, 
such as system numerical aperture (NA) and the number of sub-apertures. As shown in 
Supplementary Fig. 2, we applied the same degree of the primary spherical aberration 
(Zernike coefficient = 10) at the pupil planes of sLFM systems with 20 × /0.5NA, 40 × 
/1.0NA, and 63 × /1.4NA objectives. Here, the DOFs increase from ~ 50 μm, ~ 20 μm, 
and ~ 10 μm to ~ 185 μm, ~ 52 μm and ~ 23 μm, respectively, indicating that the degree 
of extension decreases with increasing NA. In addition, we characterized the effect of 
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the number of sub-apertures on performance (Supplementary Fig. 3). As each microlens 
covers N × N sensor pixels, an sLFM image can be decomposed into N × N sub-aperture 
components. When the size of the sensor pixel is fixed, the pitch size of a single micro-
lens rises with the increase of N. Meanwhile, as the effective NA of sLFM sub-aperture 
components is reduced by a factor of N, the corresponding DOF increases monotoni-
cally with N. When the size of the microlens pitch is fixed, larger N implies a higher 
sampling rate. DOF no longer rises with the increase of N when the sampling rate is 
adequate.

SAsLFM extends DOF and alleviates artifacts

As a proof of principle, we imaged a USAF-1951 resolution target using a 10 × /0.28NA 
long working distance dry objective with different scanning periods. In this experi-
ment, the resolution target was translated axially from the focal plane with an interval 
of ~ 100 μm. The imaging processes for sLFM and SAsLFM are identical except that we 
drenched the chart with 2-cm-thick water to introduce spherical aberration into the lat-
ter system. As for the reconstruction process in the traditional method, all the compo-
nents are focused at the same depth and sequentially fed into the algorithm one by one 
to update the estimated volume. However, we find that there is a huge redundancy in the 
angular sampling for the existing 3D deconvolution algorithm (Supplementary Fig. 4). 
Adding spherical aberration is advantageous to make use of the redundancy by assigning 
the foci of sub-aperture components to different depths. We divided the sub-apertures 
PSFs of SAsLFM into several groups, depending on their positions relative to the center 

Fig. 2  PSFs modulated by different levels of spherical aberrations. a With different levels of the primary 
spherical aberrations (Zernike coefficient set to 0, 5 and 10, respectively) appended at the pupil plane, a 
sub-diffraction-limited light source located at the depth of 50 μm in object space generates discrete spatial 
PSFs at the image plane. Although additional phases change the spatial PSF intensity profile, it is difficult 
to directly quantify the effect of this change on DOF. b Based on the wave optical theory, we simulated 
the phase-space PSFs of a 13 × 13 SAsLFM system with a 20 × /0.5NA objective. The xz-MIPs of typical 
sub-aperture PSFs with different levels of spherical aberration phases added to the pupil plane are shown on 
the top. The focal position of the central component with angular coordinate (7, 7) is referred to as the native 
focal plane (depth = 0). Yellow dashed lines mark the focus position of each sub-aperture element, illustrating 
that the displacements between different components rise with the increase of spherical aberration. 
The curves on the bottom show the Gaussian fittings of the normalized light intensity distributions of 
sub-aperture PSFs along the z-axis. Scale bars: 20 μm (a) and 100 μm (b)
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of the pupil plane. To resolve information at different depths, specific groups are selected 
as the inputs for the ADMM (alternating direction method of multipliers)-based 2D 
deconvolution algorithm as a whole. Note that although the number of components 
in each group differs, each group contains enough angular components to recover the 
original 3D information due to the angular redundancy. The reconstruction results are 
shown in Figs. 3a-b and Supplementary Figs. 5 and 6. Although there is a slight drop in 
the resolution at the native focal plane due to the laterally expanded PSFs, SAsLFM pre-
serves a significant portion of lateral spatial resolution with the ability to resolve two bars 
separated by an interval of 3.91 μm (group 7th, element 1st) in a large axial depth range 
from − 600 to 200 μm (Figs. 3c-d). Because the spherical aberration transfers the foci of 
the off-center components to the negative side of the optical axis, the resolution is asym-
metric with respect to the native focal plane. In addition, SAsLFM eliminates the edge 
artifacts caused by the ringing dilemma at the native focal plane (Supplementary Fig. 6). 
Meanwhile, we conducted another experiment using 2-cm thick oil as the immersion 
medium, and the results show that a larger spherical aberration could further extend the 
DOF (Supplementary Fig. 7). Next, we compared the SAsLFM with cubic-phase-assisted 

Fig. 3  Reconstruction results of a USAF-1951 resolution target located at different depths. a-b Comparisons 
of the reconstruction results of USAF-1951 resolution target obtained by sLFM and SAsLFM. The raw 
light-field images were obtained under a 10 × /0.28NA objective with a 15 × 15 scanning trajectory. While 
the high-resolution range of SAsLFM is comparable to that of sLFM on one side of the native focal plane, it 
has an obvious extension on the other side. c Zoom-in areas marked by the boxes in a and b. SAsLFM is able 
to reveal the details that are corrupted in sLFM at the out-of-focus layers. The intensity profiles along the red 
and orange lines are shown on the bottom. d Resolutions of sLFM and SAsLFM at different axial positions. In a 
large axial range of ~ 1 mm, SAsLFM preserves finer details than traditional sLFM. Scale bars: 50 μm
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sLFM through simulation (Supplementary Fig. 8). We respectively appended spherical 
aberration and cubic phase at the pupil plane of a sLFM system using a 20 × /0.5NA 
objective. Objects randomly located ~ 150 μm away from the focal plane can be clearly 
revealed by SAsLFM with the structural similarity index measure (SSIM) reaching 0.78. 
While cubic-phase has been shown to be effective in reducing the artifacts around the 
native object plane of LFM systems [23], it fails to alleviate the rapid degradation of reso-
lution at out-of-focus layers. The SSIM of cubic-phase-assisted sLFM is 0.66, which is 
almost the same as the value of 0.65 obtained from the sLFM without phase modulation.

SAsLFM enables observation of whole‑body vasculatures of zebrafish larvae

To demonstrate the advantages of SAsLFM in volumetric imaging, we imaged the whole-
body vasculatures of zebrafish larvae. Considering both temporal and spatial resolu-
tions, we chose a 3 × 3 scanning strategy for data acquisition. The zebrafish larvae were 
embedded in 1% agarose in a petri dish. When imaging with SAsLFM, we filled the petri 
dishes with water to introduce spherical aberration. To analyze the spherical aberration 
induced by the water, we adopted a phase-retrieval-based method [27] to estimate the 
wavefront. As expected, a larger spherical aberration was observed in the phase retrieved 
from the SAsLFM data (Fig. 4a). During the imaging process, we ensured that the central 
sub-aperture components of the original sLFM and SAsLFM focus on the same position 
of the sample. Other sub-aperture components of SAsLFM can discern finer details that 
were blurred in the original sLFM (Fig. 4a). The sharpness parameters also show that the 
resolution of components of SAsLFM is generally higher than that of sLFM (Figs. 4b-c). 
During ADMM-based phase-space reconstruction, components were divided into sev-
eral groups based on their focal depths. Since the components of the same group cor-
respond to a specific high-resolution range along the z-axis, the reconstruction process 
of merging all the information from all the groups during iterations resolves a large-scale 
volume with high resolution over an extended depth range (Fig. 4d-e and Supplementary 
Fig. 9). As shown in Fig. 4f, the vascular structure is blurred in sLFM due to resolution 
degradation, but SAsLFM could resolve vascular structures over a large axial range with 
high fidelity.

SAsLFM enables large‑scale volumetric imaging at high speed with low phototoxicity

To demonstrate the versatility of SAsLFM, we first imaged large-scale 3D calcium activi-
ties in the brain of an awake Rasgrf2-2A-dCre/Ai148D mouse in vivo. Each microlens 
corresponds to 15 × 15 pixels on the sensor. We used a 3 × 3 scanning trajectory to 
balance the trade-off between spatial and temporal resolutions. During experiments, the 
mouse was head-fixed on a customized holder with a 3D-printed plastic tube to restrict 
the body to minimize vibration, and we chose to conduct the experiments when the 
mouse was in a calm state. For SAsLFM imaging, we mounted a container weighing less 
than 2 g on the head-fixed mouse to hold the water, thus introducing the spherical aber-
ration into the optical path (Fig.  5a). During imaging, we maintained the thickness of 
water at ~ 1 cm. With SAsLFM, we can achieve single-neuron resolution across a large 
volume covering ~ 2000 × 2000 × 330 μm3 without axial scanning (Fig.  5b and Sup-
plementary Movie 1). We acquired 1009 frames of SAsLFM data at 15 Hz during ~ 67 s 
imaging session and reconstructed the 3D distribution of neurons using the phase-space 
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deconvolution. The distribution of the resolved neurons is consistent with the previous 
study [28]. Then a constrained non-negative matrix factorization (CNMF) [29] was per-
formed on the maximum intensity projections (MIPs) of the volumetric data for calcium 
signal extraction. The extracted calcium traces show that even neurons across a large 
depth range of ~ 300 μm due to the spherical surface of the cortex exhibit significant 
responses, indicating that SAsLFM could offer prospects for imaging the activity of neu-
ral ensembles over a large range (Fig. 5c).

SAsLFM also has unique advantages in observing freely-moving animals as it cap-
tures a large-scale volume with an extended DOF. To demonstrate the performance 
of SAsLFM in animal tracking, we then imaged a freely-swimming jellyfish ephyra 
at 22 Hz. Jellyfish are attracting increasing interests in the biological community 
because they have complex life cycles that provide an exciting opportunity to under-
stand the behavioral evolution. In previous studies, jellyfish were immobilized in a 
container to stay in objective focus due to the small DOF of related imaging tech-
nologies [30]. While in our experiment, we filled a petri dish with clean artificial sea-
water and put a single jellyfish ephyra inside without immobilization. To study the 
activity of freely-behaving jellyfish, we imaged the jellyfish ephyra at 22 Hz. Note that 

Fig. 4  Volumetric imaging of vascular structures of zebrafish larvae. a Sub-aperture components rearranged 
from sLFM and SAsLFM images are shown for comparison. The central components (u = (8, 8)) of these two 
methods are focused at the same depth for fair comparison and exhibit equal sharpness. Other angular 
components of SAsLFM (u = (8, 4)) and (u = (6, 11)) show finer detail than those of sLFM. The estimated phases 
at the pupil planes of sLFM and SAsLFM are inserted in the figures. b Intensity profiles along the yellow 
lines in a. c Sharpness versus sub-aperture index on the data captured by sLFM and SAsLFM. d 3D rendered 
volume obtained by SAsLFM. e Magnified views of yellow boxed regions in d, indicating that SAsLFM 
provides significant improvement with eliminated artifacts (marked with the white arrows) and higher 
resolution (marked with the yellow arrows). f The reconstructed slices of SAsLFM provide higher resolution at 
various depths, which is highlighted by the yellow arrows. Scale bars: 500 μm (a, d) and 150 μm (f)
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the jellyfish larvae are too tiny to cause large fluctuations in the water surface, and 
therefore will not cause significant distortion of the PSF. In our experiments, SAsLFM 
reveals the 3D structure with stable performance across a large depth (Fig.  5d and 

Fig. 5  SAsLFM facilitates volumetric observation and 3D tracking under various imaging conditions. a 
An add-on container filled with water was mounted on the head of a craniotomy mouse to increase the 
refractive index mismatch during imaging. b Orthogonal MIPs of the standard deviation across all 1009 
volumes for neurons in the awake mouse brain. A CNMF framework was carried out on the MIPs of the 
volumetric data to extract the locations of segmented neurons. The neurons were clearly resolved even at 
the depth of ~ 300 μm (Supplementary Movie 1). c Temporal traces of 14 selected neurons marked in b. d 
Reconstructed slices of a jellyfish ephyra at different depths show that SAsLFM provides stable performance 
across an axial range of ~ 300 μm. Cross-section profiles along the white lines were plotted as insets. e MIPs of 
a freely-behaving jellyfish ephyra at various time stamps record the activities of the tentacles (Supplementary 
Movie 2). f SAsLFM achieves 3D tracking of the 8 folded tentacles in a large volume covering ~ 2000 × 
2000 × 500 μm3. The dots represent the spatial locations of each tentacle at different time stamps. g Time 
series of the cell dynamics of the Drosophila embryo during the late developmental stages. h MIPs of two 
volumes separated by a time interval of 255 s. i Semi-automated global cell tracking in the MIPs of the entire 
Drosophila embryo. The color wheel for motion coding is shown in the bottom left. Scale bars: 300 μm (b), 
500 μm (d) and 100 μm (h)
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Supplementary Movie  2) and enables 3D tracking of the folding tentacles in a vol-
ume of ~ 2000 × 2000 × 500 μm3 (Fig. 5e-f ). These results indicate the potential of 
SAsLFM to benefit large-scale 3D imaging and analysis of freely-behaving animals.

In addition, SAsLFM facilitates long-term volumetric imaging because of its high 
photon efficiency and low phototoxicity. We imaged a developing Drosophila embryo 
expressing His2Av-mRFP1 at an interval of 60 s over a period of ~ 6.5 h. At the late 
developmental stages, the embryonic muscular becomes very active, but SAsLFM still 
achieves artifact-free whole-embryo observation with single-cell resolution (Fig.  5g). 
To track the cells in the embryos, we first performed cell segmentation using ImageJ’s 
threshold and binary function. Then, we implemented an optical flow estimation algo-
rithm [31] on two MIPs of the reconstructed volumes to automatically estimate the 
motion of every single cell (Figs. 5h-i). The result indicates that SAsLFM enables long-
term 3D observations across a large FOV, potentially extending the applications of sLFM 
in developmental biology.

Learning‑based approach accelerates 3D deconvolution

With the continuous improvements of computing hardware and the availability of mul-
tiple open-source methods, deep learning has become an attractive candidate for image 
deconvolution. To achieve real-time reconstruction, we present a U-net-based phase-
space deconvolution procedure and achieve a reconstruction throughput of 167 volumes 
per second (Supplementary Fig. 10). We acquired ~ 120 sets of high-resolution 3D con-
focal images of 3 transparent mice brains and performed forward projection to obtain 
paired phase-space SAsLFM images (Fig. 6a). The synthetic SAsLFM images were added 
with Poisson noise and then served as the inputs for the neural network. About 100 pairs 
of data were used to train the network, and the remaining ~ 20 pairs were used as the 
validation set to prevent overfitting (Fig. 6b). A combination of normalized absolute dif-
ference (L1 loss), root-mean-square error (L2 loss), and SSIM were used as the loss func-
tion to measure the reconstruction quality. To test the capability of the trained network, 
we captured SAsLFM images of another clarified mouse brain as the test data. Totally, 
SAsLFM revealed 3D structures in 25 different FOVs, covering about 1960 × 1960 × 600 
μm3 after we stitched them together using an ImageJ plugin (Fig. 6c). While the recon-
struction performance is comparable to that of the ADMM-based phase-space decon-
volution method, the computing time is reduced by 3 orders of magnitude (Fig. 6d). The 
average processing time using the ADMM-based phase-space deconvolution algorithm 
is ~ 16 s/volume (513 × 513 × 101 pixels), while the average computational time of the 
neural network is ~ 0.006 s/volume. The combination of learning-based reconstruction 
and SAsLFM acquisition promises to achieve video-rate recording and real-time recon-
struction of large-scale 3D signals.

Conclusions
As an instrumental technique for instantaneous 3D imaging, LFM has aroused growing 
interest in the community of biology and medicine. Recently, more attentions have been 
attracted to sLFM because of its superior performance in terms of spatial resolution and 
aberration amelioration. But the sparsity of microscopic data and the redundancy of 
angular components suggest that sLFM has not realized its full potential. In this work, 
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we present a multifocal technology, termed SAsLFM based on sub-aperture PSF engi-
neering to extend the high-resolution range utilizing the redundancy of phase-space 
data. By simply changing the refractive index of the immersion medium between the 
objective and the sample, we induced a large spherical aberration into the optical path to 
modulate the energy distribution of sub-aperture PSFs along the z-axis. Our method not 

Fig. 6  Learning-based approach accelerates the reconstruction without sacrificing performance. a The 
network training pipeline. We captured ~ 120 sets of confocal image stacks to generate the paired SAsLFM 
images using the calibrated phase-space SAsLFM PSFs. To simulate the camera acquisition process, additional 
Poisson noise was added to the synthetic images. The network was trained by iteratively minimizing the 
loss function, which consists of the L1 loss term, the L2 loss term and the SSIM loss term. b The dataset was 
divided into two parts, one for network training and the other used as the validation set. After ~ 1600 epochs, 
the loss of the validation procedure started to increase, while the loss of the training was still decreasing. 
c Stitched volume covering ~ 1960 × 1960 × 600 μm3, consists of 25 reconstructed image stacks with 
50% overlap. The segmentation provided by the ImageJ’s 3D objects counter function shows a sloping 
distribution of neurons in a depth range of ~ 600 μm. d The reconstruction performance of the ADMM-based 
algorithm and the network is equivalent, while the inference time of the learning-based approach is ~ 0.006 s, 
which is three orders of magnitude less than that of the former. Scale bars: 1000 μm (c) and 400 μm (d)
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only inherits the advantages of sLFM, such as low phototoxicity and high imaging speed, 
but also mitigates the degradation of lateral resolution for layers away from the focal 
plane. Moreover, reconstruction artifacts close to the native object plane can be reduced 
by our method. Such improvements facilitate applications that require fast measure-
ment of fine 3D structures in thick samples. To prove the versatility of SAsLFM, we con-
ducted extensive experiments including large-scale calcium imaging in mice, behavioral 
tracking of freely-swimming jellyfish, and long-term observation of Drosophila embryo 
development. Finally, we also derived a U-net-based method to accelerate the deconvo-
lution of light-field data and achieved real-time 3D reconstruction on our system.

Our method provides a practical approach for PSF engineering to modulate the 
sub-aperture PSFs of sLFM in phase space rather than optimizing the original spa-
tial PSFs with a large amount of discrete zero elements. In this work, for simplicity 
and wavefront continuity, we just used spherical aberration as a proof-of-concept. 
In further work, we will explore more complicated phase patterns to optimize the 
performance and broaden the applications of sLFM to compensate for the degrada-
tion of axial resolution due to the missing-cone problem. We also seek to reduce the 
localization ambiguity and realize axial “jumps” to allow the users to probe separated 
regions of interest at the same time. After figuring out the optimal phase pattern, 
our method can be implemented by inserting a laser-lithographic or 3D-printed 
phase mask into the optical path to maximize the robustness and compactness of the 
imaging system.

In addition, akin to many supervised approaches, our deep-learning-based deconvolu-
tion requires paired training images and is likely to suffer from limited generalizability or 
suboptimal performance. More investigations will be made in the future to address these 
difficulties. Unsupervised learning, such as Cycle-GAN and its variants [32–34], could 
be an optional solution to circumvent the requirement for pixel-wise matched training 
pairs. Transfer learning based on pre-trained models also offers a potential opportunity 
to promote generalizability. Another limitation is that the deep-learning-based method 
is susceptible to noise. We modeled the camera noise mathematically to solve the prob-
lem in our work, but the performance could be unstable for different noise types and 
levels. Pre-processing the input data using some self-supervised denoising methods 
could be a more versatile way to address the issue [35–37].

Materials and methods
SAsLFM optical setup

Our approach is applicable in various schematics of phase-space imaging technolo-
gies, such as LFM and sLFM. In this work, we chose the unfocused sLFM for experi-
mental demonstration (Supplementary Fig. 11). sLFM is a wide-field-esque imaging 
method with a microlens array placed at the native image plane. A camera is places 
at the back focal plane of the MLA. At the conjugated pupil plane, a piezo tilt plat-
form was placed to rapidly scan the image plane at small intervals, which is deter-
mined by different experimental conditions, to balance the trade-off between spatial 
and temporal sampling rates. Meanwhile, the periodic scan was synchronized with 
the image acquisition. Detailed imaging conditions, including the microlens array, 
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cameras, number of sub-apertures, and the scan trajectory, are illustrated in Sup-
plementary Table 1.

Stochastic path integration of pupil phases

Even the most elaborate optical systems inevitably have system aberrations, which affect 
the imaging performance. Although the DAO capability of sLFM mitigates the distortion 
caused by aberrations to a certain extent, the imaging quality still suffers from higher-
order optical aberrations. To lift the burden of DAO and to circumvent the laborious 
process of capturing 3D phase-space PSFs, we used a phase-retrieval-based algorithm to 
generate and calibrate the PSFs with the wave optics model [38] as previously described 
[27]. For each optical system, we calibrated the PSFs twice, once for sLFM and the other 
for SAsLFM. We firstly captured images of sub-diffraction-limited fluorescence beads 
(with or without a certain amount of water) as the target distribution and simulated the 
PSFs of sLFM without any additional aberration. During each iteration, we calculated 
the correlations between the simulated PSFs and the captured images along all viewing 
directions. We can obtain the residual wavefront on the pupil plane by integrating the 
correlation map. Here we adopted an effective integration method based on stochastic 
paths, which provides a smoother and more accurate estimation. There is a total of Cr

r+c 
optional integration paths connecting the central point to the point with coordinates. 
(r, c). on the pupil plane. For each point, we randomly selected 1000 paths and integrated 
the correlation map along these paths. Then we averaged the integration values as the 
final estimation of the residual wavefront at (r, c). The estimated wavefront is then fitted 
with Zernike polynomials and appended to the pupil plane to generate a new simulated 
PSF. The above iteration procedure continuously shrinks the disparities between the 
generated PSFs and the captured ones until the residual wavefront converges. We show 
the effectiveness of our method in Supplementary Fig. 12. In different experiments, there 
is a small difference between the actual PSF and the calibrated ones because the thick-
ness of the water used in the experiments is not the same as that used in the calibration 
process. However, the distortion induced by the slight difference can be eliminated by 
the light-field’s DAO capability.

Phase‑space deconvolution with a circular trajectory

The phase-space deconvolution method proposed by Zhi Lu et al. [39] increases the con-
vergence speed. Here we make further improvements to this algorithm in Fourier space 
with a circular trajectory. Based on the ADMM algorithm [40], the update process can 
be represented as:

Where I(u) is the sub-aperture component, δ is a small number to avoid a division 
by zero, ∗ signifies 2D convolution operation, V(j, k) is the estimated volume within 
iteration j th of inner loop and k th iteration of outer loop. During the inner loop, each 
iteration uses information from a single angular component to update V. After going 

V (x, z)(j,k) = αuβ

I(u)

δ+ zV (x,z)(j−1,k)∗W (x,z,u)

∗
WT (x,z,u)

J∗WT (x,z,u)
V (x, z)(j−1,k)

+ (1− αuβ)V (x, z)(j−1,k)
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through all the sub-aperture components, it goes into the k + 1 th iteration of the 
outer loop. W(x, z, u)T is the adjoint of the point spread function W(x, z, u). J is an all-
one matrix to compensate for energy loss at the edges of the images. β is an empiri-
cal coefficient to determine the convergence speed. αu is an update weight calculated 
according to the energy distribution of each angular component:

The aforementioned method may lead to oscillation during the convergence pro-
cess and crosstalk between adjacent layers. As the focus depth of each component is 
determined by the relative distance between the position of the sub-aperture and the 
center of the pupil plane, we provided an update scheme based on a circular trajec-
tory. The volume is updated by the formula:

Here we divided the sub-aperture components into several groups according to 
the position relative to the center of the pupil plane. i is the index of each group, 
Gi is the index set of angular components belonging to the i th group. Mi is the total 
number of components in Gi, p(z) denotes an update rate changing with the depth. 
It has many options, such as a sigmoid function. Starting from the outermost or the 
innermost ring, the new reconstruction method with a circular trajectory uses all the 
components in one group to update the volume during each inner iteration. With 
our approach, as the focus depth of each group is assigned to a different position, an 
empirical p(z) is used to merge all the information together to generate a large-scale 
high-resolution volume. To accelerate the update process, we derived the forward and 
backward projection in Fourier space. Due to the properties of Fourier transform, the 
forward projection process can be represented as:

Where FTn and IFTn denote n-dimensional Fourier transform and inverse Fourier 
transform respectively. sumz signifies the sum operation along z-axis in the spatial 
domain and sumfz is the sum operation along fz axis in the frequency domain. To dem-
onstrate the speed improvement, we firstly assume that the size of V is Nx × Ny × Nz, 
the size of sub-aperture PSF is nx × ny × nz. For simplicity, we assume that Nx and Ny 
are larger than nx and ny. The computational complexity of the forward projection in 
spatial space is

αu =
�W (u)�1

∑N
m=1 �W (m)�1

V (x, z)(j,k) = β
∑

u∈Gi

αuI(u)

δ+
∑

zV (x,z)(j−1,k)∗W (x,z,u)

∗
WT (x,z,u)

MiJ∗WT (x,z,u)
V (x, z)(j−1,k)p(z)

+
Mi−

∑

u∈Gi
αuβ

Mi
V (x, z)(j−1,k)(1− p(z))

∑

zV (x, z) ∗W
(

x, z,u
)

= IFT 3
(

FT 3(V (x, z)) · FT 3(W (x, z,u))
)∣

∣

∣

z=0

= IFT 1
(

IFT 2
(

FT 3(V (x, z)) · FT 3(W (x, z,u))))
∣

∣

z=0

= sumz

(

IFT 2
(
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))

= IFT 2
(

sumfz

(
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))

O
(
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)

= O
(

NxNynxnyNz

)
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While the corresponding computational complexity in Fourier space is

It illustrates that calculating the projection in frequency space significantly reduces the 
computational cost, especially when the size of V is large. In terms of the backward pro-
jection, the computational complexity is equivalent to that of the forward projection. As 
the projection operations are repeated for each sub-aperture component during itera-
tions, deconvolution in Fourier space provides orders of magnitude reductions in com-
putational costs.

Evaluation metrics

We used the SSIM to quantitatively evaluate the reconstruction performance. SSIM is 
defined as

Where μA and μB are the local means of A and B, σA ， σB and σAB are standard devia-
tions and cross-deviations for images A and B. C1 and C2 are constants to avoid a divi-
sion by null. A and B are converted to grayscale images with a range from 0 to 1.

We used a sharpness metric to evaluate the amount of high-frequency information 
contained in a single image, which can be calculated by:

Where Gradient(u, v) is a function calculating the numerical gradient of a 2D matrix 
I(x, y). U and V are the height and width of the gradient map, respectively.

Network architecture

U-net is a generic deep-learning solution for various quantification tasks such as cell 
segmentation and biomedical image deconvolution. The network architecture in this 
work was inspired by previous research [41] (Supplementary Fig. 10). We captured ~ 120 
sets of confocal images and used a wave optics model to generate synthetic SAsLFM 
images. To mimic the camera acquisition process, we added independent Poisson noise 
to the generated SAsLFM data. The data pairs were divided into two groups, ~ 100 pairs 
were used for network training and the rest served as the validation set to prevent over-
fitting. The loss function of the network consists of a pixel-wise L1-norm loss term, an 
L2-norm loss term and an SSIM term. The size of the input data was set to 513 × 513 × 
21 pixels (x- y- u), where the last term is the angular index. And the size of the output 
data was 513 × 513 × 201 pixels (x- y- z). Of note, among all the 225 phase-space com-
ponents, we selected 21 components, considering the data redundancy and the compu-
tational consumption. Before training the network, all data were normalized in the range 
from 0 to 0.9. The network was trained using the Adam optimizer with the learning rate 
set to 0.0002, and the exponential decay rates for the first-moment and second-moment 

O
(
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estimates were 0.5 and 0.99, respectively. The training procedure costs about 10 h to con-
verge with a single GPU (GeForce Titan RTX, Nvidia).

Calcium trace extraction of mouse brain

We employed a CNMF framework to decompose the MIPs of the volumetric data of 
the mouse brain into a matrix that encodes the footprints of segmented neurons. In 
the algorithm, the regions of interest (ROIs) were set to ~ 15 × 15 × 15 μm3 to match 
the size of neurons of the mice brain. Because the vessel has a significant effect on 
the selection of ROIs, resulting in a biased segmentation of neurons, we manually 
performed exclusion guided by the visual information. The calcium responses were 
then extracted directly from the abovementioned ROIs in the volumetric time-lapse 
stacks. The temporal traces of the calcium activities were calculated by the formula:

Where F is the raw averaged intensity of the extracted ROI, and F0 is the corre-
sponding intensity baseline, which was calculated by averaging the intensity of the 
signals that below 120% of the mean value of the entire trace.

Semi‑automated tracking of Drosophila embryo cells

For cell tracking in Drosophila embryos, we used a semi-automated framework rather 
than performing manually as the cells are densely labeled and the number of cells 
is too large, which makes manual labeling very time-consuming and cumbersome. 
We calculated the MIPs of two volumes separated by a time interval of ~ 255 s. Dur-
ing this time period, the distribution of the cells is slightly changed while the overall 
morphology remains almost the same. Then, we adopted an optical flow estimation 
method based on conjugation gradient [31] to calculate the distribution of veloci-
ties of movements of the bright patterns (the cells). Segmentation was applied using 
ImageJ’s threshold and binary functions to find out the contours of the cells, together 
with the fill holes function to compensate for the over-segmentation. Large areas 
were excluded by threshold filtering. Finally, 554 connected domains were segmented 
and then we extracted the values of the optical flow map on these coordinates as the 
estimation of the cell motions.

Data analysis

All data analyses were performed with customized MATLAB (MathWorks, 2020b) pro-
grams, open-source ImageJ and Amira (Thermo Fisher Scientific, Amira 2019). The 
hardware was controlled by LabVIEW 2018. The 3D tracking of 8 tentacles of the freely-
swimming jellyfish was carried out manually in MATLAB. Details of the parameters and 
rendering models are listed in Supplementary Table 2.

Imaging of Drosophila embryos

All Drosophila experimental procedures were conducted with ethical approval from 
the Animal Care and Use Committee of Tsinghua University. All Drosophila in the 

�F/F0 = (F − F0)/F0
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experiments expressed His2Av-mrfp1. Drosophila embryos were dechorionated with 
50% (vol/vol) sodium hypochlorite solution. During live imaging, Drosophila embryos 
were embedded in 0.4% low-melting agarose in a 35-mm petri dish with the temperature 
kept at 25 °C. For SAsLFM, we filled the petri dish with water to introduce the spherical 
aberration.

Zebrafish vascular system imaging

All zebrafish experimental procedures were conducted with ethical approval from the 
Animal Care and Use Committee of Tsinghua University. We cultured flk: EGFP trans-
genic zebrafish embryos at 28.5 °C in Holtfreter’s solution. The zebrafish larvae were 
anesthetized by ethyl 3-aminobenzoate methanesulfonate salt (100 mg/L) at 4–5 days 
postfertilization (dpf) and mounted in 1% low-melting-point agarose in a petri dish 
filled with water at 26–27 °C during the imaging process.

In vivo mouse experiments

All procedures involving mice were approved by the Institutional Animal Care and 
Use Committee of Tsinghua University. We used both male and female C57BL/6 mice 
10 weeks to 6 months old without randomization or blinding. Mice were group-housed 
under a cycle of 12 h light/dark (lights on at 7 a.m.) and provided with water and food 
ad libitum. The relative humidity was 50% at 20–22 °C.

The craniotomy surgery was performed on the stereotaxic apparatus (RWD, China). 
Mice were anesthetized with 1.5–2% isoflurane. After the surgery, flunixin meglumine 
(Sichuan Dingjian Animal Medicine Co., Ltd) was injected subcutaneously (1.25 mg/kg) 
for at least 3 days to reduce inflammation.

The scalp was removed by sterile surgical scissors to expose the entire dorsal skull. 
The skull was thoroughly cleaned with saline to remove all fascia above the skull. Then, 
a piece of skull (8 mm in diameter) was removed using a cranial drill and replaced with 
a crystal skull. The edge of the crystal skull and the skin incision was sealed with a thin 
layer of cyanoacrylate adhesive (Krazy glue, Elmer’s Products Inc). A custom-made 
head-post was implanted above the skull and fixed with dental cement.

For acute imaging, we used adult double-transgenic Rasgrf2-2A-dCre/Ai148D mice 
(JAX No.: 022864 and 030328) to specifically label cortical layer 2/3 neurons. Trimetho-
prim saline solution (solution concentration: 5 mg/ml, dose: 10ul/kg) was injected for 
3 days to induce cre expression. For chronic imaging, adult C57BL/6 mice injected with 
diluted AAV9-hSyn-GCaMP6s virus (from BrainVTA Technology Co., Ltd., China) were 
allowed to recover for at least 2 weeks after craniotomy. During imaging, awake mice 
were placed in a tube with the head restrained under the objective to minimize vibra-
tion. For SAsLFM, a container was mounted on the head of the mouse to hold water 
(Supplementary Fig. 13).

Cubic‑MACS clearing

Firstly, the mice were anesthetized with a 0.5% pentobarbital sodium solution 
(0.4 ml/30 g body weight). To flush blood vessels, the mice were transcardially per-
fused with 0.01 M PBS (Sigma-Aldrich Inc., St. Louis, MO, United States) with 4% 
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paraformaldehyde (PFA, Sigma-Aldrich Inc., St. Louis, MO, United States) in PBS 
(pH 7.4) for fixation. Then the sample was post-fixed with 4% PFA for 2 days under 
4 °C. The brain samples were washed with PBS for 1 day with the solution replaced 
at 8 and 16 h. Then the samples were delipidated with a CUBIC-1 solution (~ 50 ml) 
for 6 days at room temperature. The brain samples were washed again with PBS for 
1.5 days with the solution changed every 8 h at room temperature and then immersed 
in CUBIC-X1 swelling solution for 2.5 days with the solution replaced every 12 hours. 
Finally, for refractive index matching, the samples were immersed with CUBIC-X2 for 
1.5 days with the solution replaced every 12 h. During imaging, the samples were dis-
sected and embedded in 4% agarose mixed with CUBIC-X2.
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