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Introduction
Generation of structured light fields have been one of the most active topics of laser 
physics research because of their diverse range of applications [1–5] and their interest-
ing dynamics [6–9]. Direct-generation of structured light from light sources, for exam-
ple, through selecting particular high-order transverse modes directly from a laser 
cavity, benefits superior power handling, beam quality and conversion efficiency com-
pared with approaches based on external-cavity reshaping [1, 2]. The Laguerre-Gaussian 
(LG) modes are an important family of structured light, whose field distributions are 
described by Laguerre polynomials functions. LG modes are eigenmodes of a cavity with 
cylindrical coordinates, which means that they can be obtained directly from a laser cav-
ity which incorporates an appropriate mode-selection technique [10]. Demonstrated 
approaches to direct-generation of high-order LG modes from laser cavities include 
ring-shaped pump beams, intracavity phase modulating elements, a cavity mirror with 
a defect spot and via natural or thermal birefringence [2, 11–21]. The mechanism by 
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which these approaches work is the introduction of mode-varying gain or loss to the 
different orders of LG modes within the laser cavity, ensuring that there is sufficient net-
gain difference between the desired order of mode and its neighboring modes.

Spherical aberration (SA) is an inherent aberration of spherical optics. It results in var-
ied focal positions when beams with different widths are incident on a spherical lens. 
Considering that the beam radii of the ring-like LGp,m modes vary with radial and angu-
lar indices, p and m, the optical paths of different orders of LG modes may therefore be 
differentiated by SA, making mode-selection possible. In 2009, Senatsky et al. demon-
strated multimode circular output from an end-pumped Yb:YAG ceramic laser, with a 
short-focal lens in the cavity to introduce strong SA [22]. Later, the same group real-
ized single high-order LG mode output by increasing the cavity length to 80 cm (and 
longer) in order to narrow the “operating zone” of certain modes [23–25]. In our recent 
work, we demonstrated that single high-order LG mode operation can be achieved with 
a more compact cavity arrangement, by enhancing the SA via the use of a second lens in 
the cavity [26]. In that work, the angular index m of the LG0,±m output ranged from 10 
to 33, and was selectable by simply adjusting the distance between the lens and the out-
put coupler within a small range of 0.5 mm. Such SA-based approaches allow the direct 
generation of proper higher-order LG modes with high quality as an eigen mode from 
the laser cavity even without any custom-designed elements, such as intracavity phase 
modulating devices and defect spot mirrors.

In this work, we further characterize the spherical aberration-induced cavity loss on 
LG mode selection. Since the LG mode itself has non-negligible ring width, strong SA 
will also introduce significant loss to high-order modes which are supposed to be well 
retro-reflected, hence preventing them from oscillating. We modeled the influence of 
beam size and ring width of LG modes on the SA and found that managing the SA by 
choosing appropriate lens focal length is extremely important for generating desired 
orders of LG modes. In the experiment, the highest angular index m of the LG0,±m mode 
output reached 95 using a long-focal-length lens which has low SA-induced loss. Using 
a short-focal lens to enhance the mode-selecting capability, the lower-order mode of 
LG0,±1 as well as LG modes output with non-zero radial indices p were obtained.

Methods
Relationship between SA and LG modes

In our prior work, single-transverse-mode LG0,±m laser emission could be produced with 
angular index m between 10 and 33 when using lenses L1 and L2 with focal lengths of 
150 mm and 33.9 mm, respectively. The mechanism by which high-order LG0,±m modes 
can be selected via SA is depicted in Fig. 1 of ref [26]. The laser oscillates with multiple 
modes when the output coupler M2 is located at the focal point of the LG beams (with m 
below 10). This configuration has limited mode-selecting capability. In contrast, we can 
expect that single-transverse-mode oscillation of lower-order LG modes can be achieved 
by using lens L2 with a shorter focal length to enhance the effect of SA.

It was observed that the output power of the generated modes decreased as the value 
of m increased, with the laser ceasing oscillation for values of d3 less than that required 
for LG beams with m values beyond 33. One reason for this decrease in power and 
eventual cessation of lasing is a progressive deterioration of the overlap between the 
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high-order LG mode (which has an ever-increasing hollow-core diameter) and the laser 
pump beam (which has a Gaussian intensity profile) within the laser crystal. Another 
contributing factor is the SA-induced loss on the oscillating modes. Fig. 1 depicts what 
happens when a ring-like LG mode with non-negligible ring width dp,m is focused by a 
lens L2 and reflected by a mirror M2 near the focal point. The cat-eye optics formed by 
L2 and M2 can only retro-reflect the beams which have focal points exactly on the mir-
ror. As shown in Fig. 1, for a high-order LG mode with a finite ring width dp,m, not all 
the rays achieve focus at the mirror due to the effect of SA. This means that not all of 
the energy in the ring-like beam is well retro-reflected, and parts of the beam suffers 
SA-induced loss [27]. It should be noted that the loss is much lower than those of other 
modes which are far more defocused and prohibited from oscillating. The amount of 
loss increases accordingly with stronger SA.

The size of a high-order LG mode is typically defined by its second-order intensity 
moment [28], which obeys Eq. 1 in [26]. However, since we plan to use the beam radius 
and ring width to describe how strongly the ring-shaped beam is defocused, it is impor-
tant that the two parameters indicate where the energy is and how it is distributed. 
Therefore, we define the beam radius Wp,m as the radius of the circle which contains 
86.5% of the total energy of the beam, and the ring width dp,m as the difference between 
this radius and the radius of another circle which contains 13.5% of the total energy. The 
displacement of the focal point induced by the SA on a high-order LG beam with a beam 
radius Wp,m and a ring width dp,m is δ’ (in contrast to δ, which represents the displace-
ment of the actual focal points from the nominal focal point of the lens) marked in Fig. 1, 
it is easy to see that larger δ’ will result in higher loss for the oscillating mode.

Figure  2 shows the calculated the beam radius Wp,m and the ring width dp,m of 
each LGp,m mode, which are normalized to the lowest order “fundamental” mode 
beam radius w, using the intensity distribution given by Eq. 2 in [28]. It can be seen 

Fig. 2  The beam radius Wp,m and ring width dp,m of LG modes normalized to the lowest order “fundamental” 
mode radius w, as a function of angular indices m, with radial indices p of 0, 1 and 2
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that the beam radius Wp,m (black lines) is an increasing function of p and m, while 
the ring width dp,m (blue lines) does not exhibit an obvious increase with the non-
zero angular index m but increase dramatically with radial index p. Since the slope 
of the SA-induced focal point displacement increases with the beam size, a higher-
order oscillating laser mode with a larger beam radius would suffer SA-induced loss 
which is higher than that of a lower-order oscillating mode with a smaller beam 
radius. This can be seen more clearly in Fig. 3, which shows the calculated displace-
ment of the focal points of beams with certain width, from the nominal focal point 
of a f = 33.9 mm plano-convex N-BK7 lens. The ring width dp,m of the LG0,30 and the 
LG0,5 modes are marked on the curve, and these are based on the calculated funda-
mental mode beam radius w of 600 μm at the lenses L1 and L2 using ABCD matri-
ces. The gray zone represents the dp,m between the two circles which contains 13.5% 
and 86.5% of the total energy. The intersections of the two boundaries of a gray zone 
and the SA curve indicate the SA-induced focal point displacement δ’ and are indica-
tive of the loss on the oscillating mode. For the LG0,30 mode, the radii of the circles 
which contain 13.5% and 86.5% of total energy are 2.12  mm and 2.59  mm respec-
tively. This results in a focal point displacement δ’ of 0.30  mm across the ring with 
width dp,m of 0.47 mm. For the LG0,5 mode with a much smaller beam size (with cir-
cle radii of 0.79  mm and 1.25  mm) but similar ring width, the focal point displace-
ment δ’ was reduced significantly to 0.12  mm. It is indicated that the displacement 
δ’ increases with both the beam radius Wp,m and the ring width dp,m from Fig. 3. For 
modes with higher-order angular indices m and resultant larger beam radius Wp,m, 
the SA-induced defocusing can be much more significant than that of the lower-order 
modes with similar ring width dp,m but smaller beam radius Wp,m. This is a contribut-
ing factor as to why the output power of higher-order modes are lower than those 

Fig. 3  The SA-induced focal point displacement (relative to the nominal focal position) as a function of 
beam radius at the lens L2. The gray zone shows the ring widths dp,m of certain modes. Their intersection with 
the SA curve is indicative of the effect that SA has on the beam (the calculated fundamental beam radius is 
600 μm and the lens L2 is a plano-convex N-BK7 lens with f = 33.9 mm at 1064 nm)
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of lower-order modes, and is a mechanism by which they can be suppressed. If the 
oscillation of higher-order modes is desired, one should therefore use a lens L2 with 
weaker SA to reduce the impact of SA-induced loss.

We also calculated the SA-induced focal-point displacement with different beam 
radius Wp,m and ring width dp,m, as shown in Fig.  4. A number of representative 
modes are marked. It reveals that higher-order modes with larger beam radius Wp,m 
and ring width dp,m suffer larger δ’ and higher resultant loss. This explains why the 
single, high-order mode output was obtained only with the radial index p of 0 in 
our previous work [26]. Single-mode operation can be achieved only when the SA 
is strong enough to differentiate neighboring modes. However, this comes with the 
caveat in that with the use of SA strong enough for single-transverse-mode opera-
tion, modes with nonzero radial index p (with corresponding much larger ring width 
dp,m) will also suffer significant SA-induced loss and will be suppressed. It is therefore 
critical that lenses with the appropriate parameters (focal length, shape and substrate) 
and spacing d3 are chosen carefully in order to promote the generation of the desired 
order of LG laser mode.

It is worth mentioning that L2 with a shorter focal length than 33.9 mm provides 
almost the same SA-induced loss with non-zero p modes (LG modes with non-zero p) 
possessing small m. In fact, the focal displacement δ’ of non-zero p modes with m = 5 
is only within 0.12–0.35 mm, while this value for non-zero p modes with m = 95 is in 
the range of 0.5–1.3 mm, as plotted in Fig. 4. Also, the non-zero p modes possess typ-
ically a wider mode field than zero p modes, thereby yielding a better spatial overlap 
with a gain volume. Thus, the system will then allow the laser operation of non-zero p 
modes.

Fig. 4  Contour plot of the SA-induced focal point displacement δ’ as a function of beam radius Wp,m and ring 
width dp,m (with the f = 33.9 mm lens L2)
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Experimental arrangement

The experimental setup of the scalar (linearly polarized) LG mode laser is depicted in 
Fig. 5. Similar to that in our prior work [26], the laser cavity was composed of a plano-
concave total reflector M1 with a radius of curvature of 50 mm and a flat output coupler 
M2 with a transmittance of 10% at 1064 nm. The pump light from a 878.6 nm laser diode 
was focused with a beam radius of 120 μm into the laser crystal, an a-cut Nd:YVO4 crys-
tal with dimensions of 3 × 3 × 5 mm3 and doping concentration of 0.5-at.%. Two focus-
ing lenses L1 and L2 were inserted in the cavity, to expand and collimate the intracavity 
beam and refocus it to induce SA for mode selection. L1 had a focal length of 150 mm 
and was located 155  mm (d1) from the crystal, while the distance d3 from L2 to M2 
was the manufacturer-specified focal length of L2. As discussed in the previous section, 
the flat output coupler M2 will only provide feedback for the cavity mode whose focal 
point is on it, and hence the selective oscillation of different orders of LG modes can 
be achieved through adjusting the distance d3. This was done by mounting M2 onto a 
micrometer-driven translation stage. The laser output from M2 was then collimated by a 
lens L3 and refocused by another lens L4, to record the near- and far-field beam patterns 
using a CCD camera (Ophir SP907).

Results and discussions
Based on the analysis in Sect. 2, here, we used lenses L2 with different focal lengths, to 
extend the range of single LG mode outputs which could be generated. All the lenses 
used were of a N-BK7 substrate and were coated anti-reflecting at 1064 nm. For higher-
order mode output, a bi-convex lens with 51.8 mm focal length and resultant weaker SA 
was used instead of the f = 33.9 mm plano-convex lens used in our prior work. In com-
parison to our prior work, when using the same incident diode pump power of 1.03 W, it 
was observed that the near-field beam pattern in this work became hollow when the out-
put coupler M2 was moved towards the lens L2 by ~ 3 mm, from the position where the 
lowest-order, Gaussian “fundamental” mode was generated (defined as δ = 0). However, 
the hollow beam was found to be propagation-variant, meaning that the output from 
the laser was comprised of multiple-transverse-modes. This characteristic was observed 
for values of δ from 3 mm to 4.42 mm. A propagation-invariant single-transverse-mode 
output of LG0,±27 was obtained when δ reached 4.42 mm, and this beam had a power of 
127 mW. The lowest-order, single-transverse-mode output that could be obtained from 
the cavity had an angular index m of 27, which was higher than the m = 10 obtained with 
the f = 33.9 mm lens used in our prior work. This is because the f = 51.8 mm lens did not 
provide sufficient SA to distinguish the lower-order modes with smaller beam sizes. By 
decreasing the distance d3, higher-order mode outputs with lower power were obtained. 
Just prior to cessation of laser operation (for this fixed pump power), an output with a 
maximum angular index m of 75 and 11 mW output power was observed (with a value, 
δ of 5.14 mm). As expected, lower SA corresponds to lower loss, thus allowing higher-
order modes with larger beam size to oscillate under the same pump power, even with 
worse overlap with the pump beam.

Increasing the incident pump power is a straight-forward method to overcome the 
large loss impacting the higher-order modes. Therefore, we increased the pump power 
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a little from 1.03 W to 1.20 W. In doing so, single LG0,±m mode output with m ranging 
from 32 to 95 could be generated, with δ changing from 4.5 mm to 5.6 mm (correspond-
ingly the distance d3 decreased by 1.1 mm). Such high-order LG mode laser is beneficial 
to be applied in cutting-edge fields such as space-divison multiplexing/demultiplexing 
optical/quantum communication and optical tapping/manipulation with the OAM free-
dom [3, 29, 30]. The laser output power decreased from 132 to 2 mW during this pro-
cess. Fig. 6 shows some typical beam patterns recorded using the CCD camera, using 
the f = 51.8 mm lens (L2) and an incident pump power of 1.20 W. The intensity pattern 
is petal-like due to the coherent superposition of LG0,+m and LG0,-m modes. The angular 
indices m are determined by counting the dark bars around the circumference of the 
pattern.

We investigated the generation of single-transverse-mode output of lower-order LG 
modes via the application of lenses with shorter focal lengths (to induce strong SA). 
When using a plano-convex lens (L2) with a focal length of 25.4 mm, lower-order LG 
modes could be generated with angular indices m ranging from 2 to 16 and with non-
zero radial indices p of up to 4. Shown in Fig. 7 are some typical patterns obtained 
using the f = 25.4  mm lens. It is clear that the generated LG modes are asymmet-
ric. This is due to breaking of the cylindrical symmetry of the laser cavity, an effect 
which may be caused by misaligned optical elements or thermal lensing inside the 
cavity. Such asymmetric LG modes can be described as Ince-Gaussian modes (i.e. 

Fig. 6  Typical beam patterns obtained with different δ, when using lenses of focal length f1 = 150 mm and 
f2 = 51.8 mm. The lowest and highest order of eigenmodes obtained are LG0,±32 (δ = 4.5 mm) and LG0,±95 
(δ = 5.6 mm) under the pump power of 1.20 W
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eigenmodes in the elliptical coordinate system), formed by two LG modes with inter-
modal phase π. We have numerically simulated a number of these modes and their 
spatial profiles are shown in the third row of Fig.  7. An experimental investigation 
into the origin of the symmetry-breaking within our cavity is ongoing.

The effect of even stronger SA was investigated with the use of a lens with an even 
shorter focal length of 15.3 mm. Here, single-mode outputs with p = 0 and m = 1–5 
were recorded. Table 1 summarizes the ranges of LG modes which could be obtained 
with each lens used in the experiment. By using different lenses as L2 in the cavity, 
and by tuning the incident pump power, the lowest-order and highest-order modes 
which could be generated were LG0,±1 and LG0,±95 respectively. The slope efficiency 
of the laser was determined by SA-induced loss and spatial overlap efficiency between 
a gain volume and a laser mode, and it was measured to be 10–20%. Our theoretical 
analysis along with experimental results provide the optimization criteria for generat-
ing a desired single-LG mode output via the process of mode selection using intracav-
ity spherical aberration.

Fig. 7  Typical beam patterns obtained with different δ, when using lenses of f1 = 150 mm and f2 = 25 mm, 
under a pump power of 1.03 W

Table 1  The single LG mode operation achieved with different lenses (L2)

Focal length Shape Pump power Radial indices p Angular 
indices m

Range of δ Output power 
range

15.3 mm Plano-Convex 1.03 W 0 1–5 0.20–0.37 mm 10–57 mW

25.4 mm Plano-Convex 1.03 W 0–4 2–16 0.70–1.23 mm 123–155 mW

33.9 mm Plano-Convex 1.03 W 0 10–33 1.30–1.80 mm 18–191 mW

51.8 mm Bi-Convex 1.03 W 0 27–75 4.42–5.14 mm 11–124 mW

1.20 W 0 32–95 4.50–5.60 mm 2–132 mW
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Conclusion
In conclusion, we have analyzed and experimentally verified the influence of intra-
cavity SA on the range of single-mode LG output that can be generated from a 
diode-end-pumped Nd:YVO4 laser. We found that sufficient SA to distinguish neigh-
boring modes of the laser cavity is necessary for single-transverse-mode operation of 
a desired LG mode. The strength of the SA must be carefully considered as it will also 
cause non-negligible defocusing loss to the oscillating LG mode since the mode itself 
has a finite width. By using lenses with shorter focal length to enhance the SA and 
resultant mode-selecting capability, LG modes with small angular indices m as low 
as ± 1 and non-zero radial indices p of up to 4 were obtained. By using a long focal 
length lens to reduce the SA-induced losses on high order modes, the highest angu-
lar index m reached ± 95. These results demonstrate the strong potential and relative 
ease by which LG modes with customizable mode characteristics can be generated 
directly from a simple, diode-end-pumped solid state laser system.

Abbreviations
LG: Laguerre-Gaussian; SA: Spherical Aberration.
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