Skip to main content
Fig. 6 | PhotoniX

Fig. 6

From: Intelligent designs in nanophotonics: from optimization towards inverse creation

Fig. 6

(a) A ultra-high NA (=1.512 in oil immersion) meta-lens optimized by multiple traditional algorithms. Top: the FoM evolution with an inserted meta-lens diagram. Bottom: the measured beam spot showing a full width at half maximum (FWHM) of 207 nm. (b) A linearization approach to design large area metasurfaces. Top: the linearization strategy by slicing the desired phase profile into wavelength-scale sections, and then using TO to model individual piece. Bottom: simulated and experimental intensity distributions of a high NA (=0.8) meta-lens. (c) A multi-layer phase-change-material (GST41T1) meta-lens for the tunable foci and NA. Left: the physical design and model domain of meta-lens along with focused beam profiles (blue: n=3.2, red: n=4.6+0.01i). Right: the sketch of a ten-layer meta-lens structure. (d) A directly designed (by adjoint optimization techniques) meta-lens focuses two different wavelengths (780 and 915 nm) into separated positions (distance ≈ 20 μm). Left: the working mechanism of bi-layer meta-lens composed of dissimilar interacting block-based meta-atoms (magnified in the right red box). Right: the intensity profile confirming the remarkable agreement between the ideal performance (dashed lines) and the experimental data (solid lines). Figures reproduced with permission: (a) Ref. [71], Copyright 2018 ACS; (b) Ref. [72], Copyright 2019 Nature Publishing Group; (c) Ref. [73], Copyright 2020 OSA;(d) Ref. [74], Copyright 2020 OSA

Back to article page