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Abstract 

Visualizing rapid biological dynamics like neuronal signaling and microvascular flow 
is crucial yet challenging due to photon noise and motion artifacts. Here we pre-
sent a deep learning framework for enhancing the spatiotemporal relations of opti-
cal microscopy data. Our approach leverages correlations of mirrored perspectives 
from conjugated scan paths, training a model to suppress noise and motion blur 
by restoring degraded spatial features. Quantitative validation on vibrational calcium 
imaging validates significant gains in spatiotemporal correlation (2.2×), signal-to-noise 
ratio (9–12 dB), structural similarity (6.6×), and motion tolerance compared to raw 
data. We further apply the framework to diverse in vivo experiments from mouse 
cerebral hemodynamics to zebrafish cardiac dynamics. This approach enables the clear 
visualization of the rapid nutrient flow (30 mm/s) in microcirculation and the systolic 
and diastolic processes of heartbeat (2.7 cycle/s), as well as cellular and vascular struc-
ture in deep cortex. Unlike techniques relying on temporal correlations, learning inher-
ent spatial priors avoids motion-induced artifacts. This self-supervised strategy flexibly 
enhances live microscopy under photon-limited and motion-prone regimes.

Introduction
Living systems exhibit complex behaviors spanning spatial and temporal scales, from 
cardiac pulsation to neuronal spiking. Capturing and quantifying these fast biologi-
cal dynamics can provide fundamental insights into physiology, development, neural 
function, biomechanics and more [1–4]. Commonly used two-photon laser-scanning 
microscopy (TPLSM) furnishes biologists with a practical tool for deep interrogation 
of biological structures and functions with high optical resolution and penetration 
depth [4–7]. Nevertheless, achieving clear visualization of rapid biological processes 
with TPLSM is fundamentally challenging. For example, imaging the rapidly beating 
heart requires an exposure time of less than 3 ms with enough detected photons to 
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minimize motion blur [8]. This exceeds the typical frame rate (30 Hz) of a resonant-
scanning TPLSM. Photon limits, motion artifacts, and signal loss during acquisi-
tion degrade fidelity [9–12], while hardware constraints impose inherent trade-offs 
between imaging speed, field of view (FOV), resolution, and signal-to-noise ratio 
(SNR) [13–15]. Surmounting these barriers could drive transformative discoveries 
across the life sciences.

Advanced computational processing can extract subtle features difficult to resolve 
optically [16–18]. Data-driven deep learning has shown early promise in overcom-
ing limitations of optical devices through software enhancements [19] and honing 
insights from microscopy data [20]. This approach provides a more flexible frame-
work that can bypass explicit noise modeling [21, 22] and directly learn image fea-
tures, enabling reliable mapping from corrupted, low-contrast data to high-quality 
approximations [23–28]. However, most techniques rely on registered raw input and 
ground truth image pairs for supervised training, presenting bottlenecks in scalabil-
ity. Self-supervised learning is emerging as a promising method to circumvent this 
requirement by exploiting structure within the data itself to train neural networks 
[29–32]. Such built-in redundancy manifests in numerous forms, e.g. multimodal 
correlations, neighbor interpolation, noise consistency, temporal continuity, etc. 
The self-supervised learning overcomes the need for paired data exemplars, recov-
ering useful information from signals obscured by photon noise. Nevertheless, for 
high-speed imaging of dynamically evolving biological processes, consistent tem-
poral relationships for self-supervised training could be inaccessible, limiting their 
applications in denoising and deblurring of rapid biodynamics.

Here, we demonstrate DeepBID, a self-supervised paradigm for biodynamics 
imaging denoising and deblurring under challenging in vivo conditions. We focus 
specifically on harnessing the spatiotemporal relationships of microscopy data con-
structed by the bidirectional scan lines in TPLSM, and adapted a lightweight and 
efficient 3D model [32] to restore degraded spatial correlations by mapping between 
the conjugated scan lines. TPLSM sequentially samples the same structures with 
different noise distributions for mirrored perspective. This avoids potential spati-
otemporal artifacts when utilizing temporal correlations across frames, which may 
confuse neural network mappings for dynamic imaging targets. Importantly, exist-
ing microscopes can readily provide suitable training data, facilitating adoption. We 
show the effectiveness of the approach in mitigating noise and motion artifacts in 
vibrational neuronal and astrocytic imaging, as well as reinforcing visualization of 
rapid nutrient flow in microcirculation and systolic and diastolic processes of car-
diac dynamics.

Quantitative analysis demonstrates significant boosts in trace correlations, SNR, 
structural similarity, motion robustness, and segmentation fidelity over raw data. We 
highlight diverse in vivo contexts from neural activity, hemodynamics with cellular 
resolution to cardiac dynamics during rapid beating. Thereby, this work establishes 
a flexible computational imaging platform to strengthen live microscopy under chal-
lenging photon-limited and motion-prone regimes. By learning to extract maximally 
useful information from the signals directly registered by the sensor, our approach 
can relax hardware constraints to open up new imaging capabilities for morphological 
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and functional interrogation of biodynamics. The data-efficient training paradigm is 
readily scalable, while the framework is sufficiently generalizable for enhancing data 
from a variety of modalities.

Results and discussion
Dual‑perspective self‑supervised learning and testing

Microscopic imaging typically involves the sequential raster scanning of lines in both 
forward and backward trajectories. Bidirectional scanning demands meticulous align-
ment between the starting and ending positions across both scan directions to avoid 
undesirable jagged effects. This alignment challenge often leads to the discarding of 
information from one scanning direction, particularly noticeable in kHz resonant scan-
ning processes, to attain high-quality images. To address this drawback, we introduce 
DeepBID with mirrored perspective self-supervised learning (MP-SSL) that leverages 
the information acquired from both forward and backward scan paths to construct a 
noise-diverse yet content-consistent dataset (Fig. 1a). Notably, MP-SSL allows full uti-
lization of the bidirectional data for enhancement, overcoming the need to discard one 
scan direction. This strategy effectively bridges the temporal differences between adja-
cent frames, offering a stark contrast to the time-lapse perspective self-supervised learn-
ing (TP-SSL), which primarily learns the similarity between adjacent frames and shows 
excellent denoising performance in calcium imaging [31, 32]. The ensuing lightweight 
3D network then harnesses this dataset to learn and restore the intricate spatiotemporal 
relationships inherent within images, thus enhancing clarity and quality. The essential 
components of the TPLSM system, the architecture of the 3D network, and the con-
struction of the training dataset are elucidated in Fig. S1. The example low-SNR, cor-
rupted images of astrocytes situated at different depths within the mouse brain were 
restored using MP-SSL, yielding significantly enhanced visibility and quality (Fig.  1b, 
Visualization 1). This network inference remained untrained, relying solely on the utili-
zation of the pretrained synthetic data model that follows.

To quantitatively demonstrate the denoising capabilities of the model and its ability to 
remove motion artifacts, we initiated our exploration by applying the model to oscilla-
tory calcium imaging data. This endeavor involved the creation of a comprehensive bio-
logical model incorporating various components, including blood vessels, neurons, and 
background dendrites/axons (Fig. S2). To enhance the realism of the synthetic record-
ings, we meticulously factored in optical propagation considerations, encompassing the 
point spread function (PSF), as well as the scanning dynamics intrinsic to the TPLSM 
system (Fig.  1c). This intricate process yielded synthetic noise-free recordings with 
hyperrealistic pixel distribution [32–34]. For the purpose of fostering a symmetric learn-
ing paradigm, we simulated a bidirectional scanning methodology. This entailed having 
the backward scan precisely mirror the trajectory of the corresponding forward scan, 
thus inducing the emergence of dual perspective within the resultant image (Fig.  1d). 
To facilitate subsequent MP-SSL training, we strategically allocated twice the number of 
pixels in the y-direction as compared to the x-direction.

The next stage involved the injection of mixed Poisson-Gaussian noise, taking into 
account the three primary sources of noise (dark noise, shot noise and readout noise) 
[35]. This process was meticulously executed on both the fluorescent neurons and the 
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non-fluorescent vasculature recordings, thus emulating the authentic complexities of a 
real microscopy scene (Fig. 1e). Unlike previous works focused on motionless calcium 
imaging, we deliberately introduced realistic motion artifacts into the data (Fig.  1e). 

Fig. 1 Principle and performance validation of DeepBID. a, Diagram of the data construction. The raw 
stack from in vivo brain imaging, comprising forward and backward scan lines, is segmented into input and 
target sub-stacks for 3D network training, a process seamlessly integrated into the model. Post-training, 
the pretrained model enables direct testing of unidirectional or bidirectional scan images without division. 
b, Example test outcomes showcasing astrocyte images with vibrations. The noise in the volume was 
suppressed, rendering deeper structures more distinct. c, Left, a synthetic distribution of neurons (blue) and 
vessels (red). Right, convolution with the point spread function of the two-photon system. d, Generated 
reference image using bidirectional scanning for evaluating image quality metrics. Forward (blue dashed 
line) and backward (red dashed line) scanning paths are collinear, ensuring high semantic relevance for 
self-supervised learning. Scanning lines in the same direction remain parallel. These noise-free images 
serve as benchmarks for network performance assessment. e, Raw data constructed by introducing mixed 
Poisson-Gaussian noise and motion drifts (indicated by yellow arrows). f, Long-timescale calcium fluctuations 
evoked by 70 isolated neurons. All traces were normalized, with prominent firings delineated between red 
dashed lines. Zoomed-in traces are featured in the right panel. g, Top, Tukey box-and-whisker plot illustrating 
Pearson correlations of calcium traces extracted from enhanced data versus raw noisy data with a two-tailed 
Wilcoxon matched-pairs signed rank test (n = 70). Bottom, Correlation augmentation post-denoising. Each 
line corresponds to a distinct recording. Scale bars, 50 μm in b, d, and e 
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These artifacts stemmed from factors such as instrument vibrations, respiration, and 
cardiac activity [36–38]. This addition inherently induced a scenario where neurons 
exhibited random “jumps”, leading to misalignments between adjacent frames, especially 
at the high imaging speed of 30 Hz. Each frame underwent random motion-induced 
shifts, rendering it arduous to align algorithmically. Given this intricate blend of factors, 
we synthesized the highly realistic two-photon image data of neurons by amalgamating 
convolution acquisition, noise corruption, and motion blurring. We fed the generated 
synthetic records into the network to learn the mapping between two perspectives of the 
conjugated scan paths for self-supervised denoising and deblurring, without access to 
pristine data except for benchmarking and quantification.

We manually segmented neurons to extract time-dependent calcium traces (Meth-
ods) on the raw data, MP-SSL inferred data, and pristine data. At long timescales, cal-
cium traces extracted from the raw data exhibit a high noise level, leading to difficulty 
in signal extraction for the calcium spikes. However, the denoised data exhibit enhanced 
congruence with the noise-free ground truth, especially at low SNRs (Fig. 1f ). Using MP-
SSL, calcium traces are clearly visible, and smoother signals are extracted from neurons 
heavily affected by noise and motion artifacts, surpassing the corresponding high SNR 
reference in some cases. The calcium traces produced through the application of MP-
SSL may exhibit greater levels of visibility and smoothness compared to those associ-
ated with the high SNR reference example. This because any image noise of zero mean 
cannot be learned by the network, and the network can only learn the map of the clear 
data, so the self-supervised method may obtain smoother data than the data with a 
high SNR. After denoising, there is a substantial improvement in Pearson correlation 
when compared to the raw traces (depicted in Fig. 1g), showcasing an average increase 
of 67%. Remarkably, even calcium traces affected by motion blur could be effectively 
recovered from the initially noisy raw data, with concurrent attenuation of background 
noise. 1.These observations collectively underscore the potential of self-supervised spa-
tiotemporal enhancement to markedly enhance the precision of neural signal extraction, 
thereby facilitating the intricate analysis of neural circuits.

Denoising and deblurring motion‑affected imaging data

We conducted a comparative analysis between MP-SSL and the chosen TP-SSL method 
(Fig. 2a–d, Visualization 2). Under a large image distortion caused by motion, the TP-
SSL restoration of neurons exhibited noticeable blurring, while MP-SSL remained 
largely unaffected by motion artifacts due to its primary focus on learning intra-frame 
spatiotemporal correlations within the 16-kHz bi-scan paths (Methods). We extracted 
an individual neuron with spontaneous neural activity (zoom-in of Fig.  2a–d), which 
exhibited a drifting pattern indicated by the yellow arrow, attributed to vibrations. The 
TP-SSL approach suffered from spatiotemporal confusion and ghosting in the restored 
neurons, stemming from its learning of inter-frame dynamic correlations at a medio-
cre frame rate. In contrast, MP-SSL could clearly retrieve individual neurons and cal-
cium signals, bypassing motion blurring and enriching fluorescence photons. Moreover, 
MP-SSL was able to resolve previously invisible neurons with significantly lower SNR, in 
contrast to the blurred visualization achieved with TP-SSL (Fig. S3a–d). This facilitated 
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Fig. 2 Deep learning-enhanced motion-affected synthetic and experimental data. a, Synthetic portrayal 
of spontaneous calcium dynamics within the mouse cortex without noise. b, Raw data degraded from the 
clean image. TP-SSL restoration (c) and MP-SSL restoration (d) of the low-SNR recording. The magnified 
neuron in the lower sections, depicted at various time points, is highlighted within yellow boxes, with the 
moving direction indicated by yellow arrows. Correct restoration via MP-SSL is marked by green arrowheads, 
while ghosted neurons resulting from TP-SSL are denoted by magenta arrowheads. e, The y-t  views of the 
neuron exhibiting calcium signals and temporal shifts within a 15-second window. Also, see the orthogonal 
x-t  views in Fig. S4. f, Tukey box-and-whisker plot illustrating spatiotemporal correlation changes in calcium 
data pre and post-denoising (n = 70 x-y-t  stacks). g, Improvement of the 3D SNR. Each line represents 1 of 70 
spatiotemporal data. The overlay of a statistical Tukey box-and-whisker plot provides context. Correlation and 
SNR calculations reference clean stacks. h, Experimentally captured astrocyte image with a low SNR using the 
bidirectional resonant scan TPLSM. i, Image restored from the low-SNR image using the pretrained calcium 
MP-SSL network. j, Temporal average of the raw input frames (n = 300). Yellow boxes indicate the extracted 
neuron magnified in the insets. Magenta arrowhead indicates the vague neuron (h), while green arrowheads 
point to the clear neuron (i,j). k, Astrocyte images at a larger cortical depth. The TPLSM input and MP-SSL 
result are shown in the left and right portion, respectively. Error maps, RSP, and RSE values for raw input (l) and 
network output (m) were calculated in relation to the temporal average image. Column bar graph of SSIM 
(n) and x-y spatial correlation (o) calculated between each frame and the 300-frame average (n = 51 stacks 
with 300 temporal frames per stack from a depth range of 300–550 μm). Two-tailed Wilcoxon matched-pairs 
signed rank tests were applied between the raw input and MP-SSL output in f. g and n, and mean ± standard 
deviation (SD) was shown in n and o. Scale bars, 50 μm in d and 30 μm in the other images
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a more precise extraction of spatial and temporal components of neurons (Fig. S3e–h) 
using constrained non-negative matrix factorization (CNMF [39, 40]).

Presented in Fig. 2e is the y-t orthogonal view of the neuron, centered around the sig-
nal firing instance. The TP-SSL method erased finer details of the neuron contour due 
to the pronounced oscillations in the y direction (see x direction in Fig. S4a), whereas 
MP-SSL exhibited an impressive alignment with the pristine data. We quantified x-y-t 
correlations by employing the neurons extracted from the data, as showcased in Fig. 2f. 
In comparison to the temporal ( t ) correlation of calcium traces, the x-y-t correlation 
simultaneously assessed spatial drifts of neurons and temporal dynamics of the calcium 
signal. MP-SSL significantly enhanced the overall correlation by 114% over the input 
(0.92 vs. 0.43), resulting in lower restoration variance. To quantify motion robustness, 
we computed the correlation enhancements of the x-t slices, the y-t slices, and the x
-y slices to assess spatial structure preservation and temporal trace consistency before 
and after denoising (Fig. S4b). The improved correlations demonstrate the effectiveness 
of the method in mitigating motion-induced degradation. Specifically, x-y correlation 
shows maintenance of spatial alignment, while x-t and y-t correlation validates recover-
ing the temporally consistent calcium dynamics. Moreover, the 3D SNR ( x-y-t ) of the 
MP-SSL restoration experienced a notable improvement of 12 dB (Fig.  2g), indicating 
remarkable noise suppression and a remarkable spatiotemporal recovery of neural signal 
correlations. Note S1 details that MP-SSL also achieved a significant enhancement in the 
3D structural similarity index measure (SSIM).

We further demonstrated the transfer learning capability of MP-SSL by applying the 
pretrained denoising model to the raw images of experimentally captured astrocytes 
(Fig. 2h-j). Despite the real noise profiles differing from the simulated training data, the 
deep network significantly reduced noise after transfer learning, enhancing image qual-
ity. The motion-affected dendritic spines and branches (Fig. 2h) were clearer upon resto-
ration (Fig. 2i), aligning well with the average over the raw 300 frame input (Fig. 2j). This 
significant reduction in noise improved image quality and greatly reduced the number 
of scans required to obtain high-SNR images. At a larger cortical depth (Fig.  2k), our 
approach effectively resolved the invisible structural details and textures that were origi-
nally submerged in noise, thereby providing a clearer view of cellular morphology. We 
also denoised the 2× zoom-in images (all astrocyte images were restored using the pre-
trained calcium MP-SSL network). The achieved sharpness in the 3D and optical-section 
restoration at different depths (Fig. S5) showed that the structural and dynamic informa-
tion of nerve and glial cells were clearly resolved at the network output, agreeing well 
with the high-SNR cumulative images.

Additionally, we presented the intensity profiles along the terminal branch of the 
astrocyte in Fig. S6. The irregular profile for the input image shows a low distinguishabil-
ity of noise and informative signals, which results in difficulty in structure visualization 
for the weak-signal regions. Nevertheless, these unwanted fluctuations were effectively 
removed during the restoration process, preserving tissue structure features well. For 
verification, we quantified the error mapping of the raw input image (Fig. 2h) in com-
parison with that of MP-SSL output image (Fig. 2i) concerning the temporally average 
reference (Fig. 2j), as shown in Fig. 2l, m. The calculated error maps, resolution scaled 
error (RSE), and resolution scaled Pearson coefficient (RSP) [41, 42] (Methods) reveal 
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that MP-SSL did not introduce noticeable restoration artifacts or blurring, as evidenced 
by the significantly high RSP of 0.97, compared to the original 0.33. The network output 
results had a much lower level of spatiotemporal mismatch error and high correlation 
with the high-SNR reference, even when considering large depths over 400 μm (Fig. S7). 
Note that the 300-frame average was used for the metric calculations since pristine ref-
erence was unattainable and the selected images for evaluating the metrics were motion-
less and therefore highly similar to the average frame. The network inference achieved 
a 6.6-fold enhancement in SSIM (0.14 for raw input and 0.94 for MP-SSL, Fig. 2n), as 
well as a 3.4-fold spatial correlation between each output frame and the temporal aver-
age (Fig.  2o) at the cortical depths from 300 to 550 μm. Thereby, MP-SSL can highly 
suppress noise fluctuations affecting the visualization of astrocyte and neuronal network 
without “freezing” their spatiotemporal dynamics, and avoid restoration artifacts and 
blurring. This highlights the generalizability of the MP-SSL approach to experimental 
imaging data beyond the synthesized training distribution.

Visualizing and measuring rapid hemodynamics

Observing hemodynamics and understanding microcirculation provides crucial insights 
into cerebral vascular health and disease. Abnormal hemodynamics have been impli-
cated in conditions such as atherosclerosis, hypertension, and aneurysms [43–45]. 
Conventional hemodynamic visualization is susceptible to motion artifacts attributed 
to swift flow, resulting in significant inter-frame hemodynamic disparities constrained 
by inadequate photon availability. To demonstrate the efficacy and adaptability of our 
approach to experimentally acquired hemodynamic data, we conducted high-speed 
imaging of mouse brain vessels utilizing a custom TPLSM setup in conjunction with a 
synthesized contrast agent (Methods). Utilizing the low-SNR data as the input for the 
MP-SSL network learning, we accounted for the <1-μm mismatch between forward and 
backward scan paths. Synchronized high-SNR data, on the other hand, were utilized for 
a quantitative assessment of denoising efficacy. Post-network inference, both TP-SSL 
and MP-SSL proficiently eliminated mixed noise from bidirectionally scanned time-
lapse stacks (Fig. 3a–d, Visualization 3). Although both methods (Fig. 3c–d) delineated 
the outlines of low-SNR vessels (Fig. 3b), TP-SSL, due to substantial inter-frame shifts, 
struggled to distinguish intricate hemodynamic dynamics such as erythrocyte motility 
and nutrient flow in the microcirculation [45]. In contrast, MP-SSL precisely resolved 
these processes, effectively capturing particle size and position in excellent agreement 
with the pristine reference (Fig. 3a). By leveraging the distance l traversed by the par-
ticle over the time interval t , the flow velocity was computed to be approximately 0.6 
mm/s, based on the denoised frames. This insight provides a quantitative measure of 
the resolved microcirculation through our approach. Furthermore, the intensity pro-
files across the cross-section of the small vessel in Fig. S8  highlighted the diminished 
visibility of the raw data, which underwent substantial enhancement after the network 
inference, strongly aligning with the averaged data. However, it is important to note that 
intravascular transport within the averaged image remains concealed.

At higher flow velocities, substances within the vessels exhibit motion blurring and 
trailing artifacts in the raw data due to their rapid displacement across scan lines. We 
employed residence time line scanning (RTLS [46]) to directly analyze flow velocity by 
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Fig. 3 Deep learning-enhanced high-speed hemodynamics imaging. a, Mouse cerebrovascular 
images captured by the TPLSM with a high SNR. b, Quality degradation with the depth-related mixed 
Poisson-Gaussian noise as raw data, which was restored using TP-SSL (c) and MP-SSL (d). Magnified views 
of the yellow boxed regions show an out-of-focus vessel (e), with its continuous segments at distinct 
time points displayed in f, with corresponding segments indicated by orange arrows and nutrient flow 
in microcirculation by yellow arrows. Notably, MP-SSL resolved the instantaneous positions of nutrient 
particles (green arrowheads), which remain indistinct (magenta arrowheads) in TP-SSL restoration. Flow 
velocity is derivable from travel distance ( l  ) against travel time ( t  ) calculations. g, Raw image depicting 
rapid hemodynamics within larger brain vessels. h, The restoration outcome using MP-SSL, allowing 
computation of high flow velocity via single-frame l  and t  values using the RTLS technique. Faint vessels (g) 
in the deeper layer (separated by the white lines) were restored clearly (h). MP-SSL distinguishes previously 
unclear substances (magenta arrowheads), now evident (green arrowheads). i, Improvement of the 3D SNR. 
Each line represents 1 of 92 spatiotemporal stacks, accompanied by an overlaid Tukey box-and-whisker 
plot for statistical context. j, Column bar graph of the 3D SSIM with mean ± SD. k, Volumetric vasculature 
reconstruction using experimentally captured time-lapse series at 5 μm/stack. Brightened contrast in the 
lower section (deeper tissue) is revealed in l. m, The denoised brain volume, with the deep portion displayed 
in n. Volumes are reconstructed for maximum projection and are also projected to 2D (o,p) for dynamic 
temporal observation. Orange arrows point out instances of the initially obscured vessels (o) significantly 
influenced by noise, which were efficiently restored through network inference (p). Scale bars: 10 μm in e and 
30 μm in the remaining images
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scanning a line at an arbitrary angle to the vessel (Fig. 3g, h). Calculating the velocity 
from points AB yielded a remarkable 30 mm/s, which is 50 times faster than that seen in 
Fig. 3f. In the raw data, structural features are barely distinguishable and appear as faint 
shadows at the bottom of Fig.  3g, h. In contrast, the MP-SSL restoration dramatically 
enhances visibility, effectively recovering intricate vessel morphology and hemodynam-
ics (Fig. 3h, Visualization 4), in harmony with the high-SNR sequence (Fig. S9a–c). Sub-
stances associated with nutrient flow that were faint in the raw data were now distinctly 
detected (Fig. 3g, h and Fig. S9e, f ). Moreover, the ultrafast learning capability of MP-
SSL significantly reduces persistent background artifacts, such as scanning fringe arti-
facts (SFA) stemming from periodic flickering ambient light and resonant scan coupling 
[15]. Comparing with the raw data, the SNR experienced an enhancement of approxi-
mately 9 dB (11.8 dB for MP-SSL compared with 2.7 dB for the raw data). The SSIM of 
MP-SSL restoration in relation to the high-SNR sequence reached 0.70, representing a 
four-fold improvement over the raw data. In contrast, TP-SSL achieved a lower SSIM of 
0.60, accompanied by blurred details. Fig. S9d highlights a 1.9-fold improvement in the 
x-y-t correlation. These enhancements verify the robust visualization of vascular struc-
tures and blood flow in the microcirculation at high flow speeds.

Comparative evaluations were undertaken by presenting the denoising results 
obtained using different models [30–32, 47], which demonstrated restoration artifacts, 
stagnant dynamics, lower correlation, SNR and SSIM, against the MP-SSL outcomes 
(Fig. S10). This comparison demonstrates the higher-fidelity restoration achieved by 
our method for hemodynamic visualization, serving as valuable inputs for video track-
ing. Note S2 underscores the challenge posed by noise-affected vascular structures for 
automatic segmentation using the segment and track anything network (SAM-Track) 
[48, 49]. However, post-noise reduction, these dynamics can be effectively distinguished, 
thereby enabling real-time multi-object tracking and propagation.

We further conducted extensive vasculature restoration on time-lapse stacks at depths 
ranging from 310 to 750 μm (Fig. 3k–n, Visualization 5). After MP-SSL denoising, even 
low-contrast depths beyond 550 μm in the volumetric images (Fig.  3l) experienced a 
marked signal recovery, vividly demonstrated in Fig.  3n. As a result, vessel structures 
and real-time dynamic transports were both vividly visualized (Fig. 3o, p, Visualization 
6). The cortical parenchyma is permeated by an intricate network of blood vessels, which 
run approximately parallel and delve into the deeper cortical layers, with the main ves-
sels sending out smaller branches along their course. Remarkably, these invisible small 
branches were resolved without introducing artifacts using the network (Fig.  4). To 
quantify the performance of restoration, we calculated the x-y correlation between indi-
vidual frames and the temporal average for nearly motionless vascular images displaying 
minimal temporal changes (Fig. S12a–f). In contrast to the original consecutive frames 
of the raw stack, which were temporally decorrelated and exhibited higher standard 
errors, the MP-SSL restoration showcased enhanced correlations that approached unity, 
along with a substantial reduction in errors (Fig. S12g). Thereby, the meticulous clarity in 
observing and describing the orientation and distribution of vessels and internal hemo-
dynamics holds the potential to greatly enhance the understanding of the pathological 
mechanisms underlying vascular functional impairment in various brain disorders [50].
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Reconstructing heartbeat and cardiovascular system

Understanding cardiac development and function is of utmost importance, given that 
the heart is the first organ to form and initiate blood circulation during vertebrate 
embryo development [8, 51, 52]. The visualization of the rapid and intricate motions 
of the beating heart presents significant imaging challenges, yet offers invaluable bio-
medical insights [8, 52, 53]. We extended the application of our model to address the 
challenge of denoising the photon-limited and motion-prone dynamics of the beat-
ing zebrafish heart. In this pursuit, we captured the cardiac dynamics across nearly 28 
cycles within a 10-second span (Fig. 5a–d), utilizing transgenic lines that label the vas-
culature (Methods). The restored clarity achieved through MP-SSL is correspondingly 
showcased in Fig. 5e–h. The complete cardiac cycle can be observed in Fig. S13a–d and 
Visualization 8.

Fig. 4 Enhanced deep angiography with the MP-SSL network. a, Temporal evolution of 3D vascular network 
reconstructions within the depth range of 550–750 μm. b, Cross-sectional views of the vascular volumes at 
various depths, with yellow and green arrows indicating the time and depth axes, respectively. Scale bar: 30 
μm
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Within the context of the beating heart, the cardiac microstructures and weak expres-
sion patterns tend to be elusive (Fig. 5b, c), mainly due to the insufficient frame rate of 
30 Hz exceeding the exposure time required to minimize motion blur [8]. Nevertheless, 
the high-SNR network restoration effectively unveiled native cardiac structures across 
the entire cycle (Fig. 5f, g). Notably, the dynamic changes in the size of the atrium and 
ventricle can be observed throughout the cycle, indicative of the systolic and diastolic 
processes of the heartbeat. The self-supervised model recovered fine-details (insets in 
Fig. 5f–h) otherwise obscured by noise and motion-blurring (insets in Fig. 5b–d). The 

Fig. 5 Spatiotemporal enhancement of cardiac dynamics imaging using DeepBID. Additionally, see Fig. S13. 
a–d, Image of the heartbeat at various phases (with time indicated relatively by clock schematic) during 
the cardiac cycle. A, atrium; V, ventricle. e–h, The corresponding restoration of the heartbeat at various time 
points using MP-SSL. Blue-yellow dashed line indicates the vague cardiac silhouette, which was resolved 
(blue-yellow solid line) by the network. The color composition of blue and yellow in the middle bar signifies 
the atrium and ventricle size ratios during their systolic and diastolic processes. Yellows boxes correspond 
to the magnified views. Yellow line in the inset images refers to the line of the shown cross-section. i, 
Contours of the atrium and ventricle depicted using the denoised images, with black arrowheads indicating 
contraction and relaxation directions. j, Zoom-in views of an erythrocyte adjacent to the heart, gradually 
moving out of view. Magenta arrowheads indicate the vague erythrocyte. k, Denoised images courtesy 
of MP-SSL, revealing a clarified erythrocyte (green arrowheads). The motion direction of the erythrocyte is 
marked by yellow arrows, with v denoting velocity. l, Illustrations of erythrocyte locations at distinct instances 
based on its clear motion (k), a challenge with noisy stacks (j). Scale bars, 30 μm in d, h and 10 μm in j, k 
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noise that overwhelms the signal shown in the intensity profiles in the raw images 
(Fig.  5d) were highly suppressed by the self-supervised learning inference, producing 
real connecting filament (Fig. 5h). The background SFA were also suppressed (Fig. S13e, 
f ). Leveraging the denoised images, the contours of the atrium and ventricle, as well as 
the beating pattern of the heart, were discerned more distinctly (Fig. 5i). This level of 
clarity has the potential to uncover insights into the cardiac systolic and diastolic global 
and regional functions.

We conducted a focused examination on an individual erythrocyte adjacent to the 
heart (Fig.  5i), revealing that at t = 1.73 s, it presented with rather indistinct details. 
Over the next ~0.6 seconds, it navigated along the fiber at a leisurely pace, characterized 
by unsharp and irregular structural features. Eventually, it descended beyond the field 
of view in the raw images. Post-denoising, the faint outline of the erythrocyte emerged 
into clarity (Fig. 5j), with precise spatial locations and trajectory meticulously extracted 
in Fig. 5k. These denoised and deblurred images of erythrocytes complement the com-
prehensive high-speed hematic data, thereby providing a more holistic understanding 
of zebrafish cardiac dynamics. In light of these achievements, our high-speed imaging 
technique, proficient in capturing both the intricate structural dynamics of the heart and 
its beat patterns, boasts considerable potential for advancing our grasp of physiological 
processes.

Conclusions
This study demonstrates a powerful self-supervised learning framework for denoising 
and deblurring of biological imaging data corrupted by noise and motion artifacts. The 
proposed approach focuses on exploiting spatiotemporal correlations within imaging 
data to suppress noise and recover clear structures. Quantitative evaluation on synthetic 
calcium imaging data showed significant improvement in temporal trace correlation, 
spatial motion correlation, SNR, and segmentation accuracy compared to raw data, even 
at very low SNRs and with motion artifacts. The x-y and y-t correlation benchmarking 
quantitatively validated the robustness to motion artifacts, showing both spatial and 
temporal structure are retained despite distortions. Moreover, DeepBID generalization 
was evidenced by consistent gains across varying noise, motion, and imaging object. 
Segmentation and matrix factorization further validated extraction of more accurate 
structures from the enhanced data.

Notably, by primarily utilizing 64-μs scan line priors, MP-SSL avoids spatiotemporal 
confusion that can introduce artifacts when using temporal correlation of 33 ms. This 
was evidenced by clearer traces and higher spatiotemporal similarity compared to TP-
SSL, particularly for rapid biodynamics with large inter-frame drift. Ghosting artifacts 
and blurring were mitigated in MP-SSL restorations. The strength of spatial-focused 
learning was further shown in angiography. MP-SSL achieved sharp restoration of mor-
phology and hemodynamics in microvessels, accurately resolving velocity differences 
between vessel sizes. Fine transient phenomena like trailing artifacts at high flow speeds 
could also be recovered. Deep-tissue volumetric imaging showed high-fidelity enhance-
ment down to over 550-μm depth. Multi-target segmentation and tracking was also 
enabled by suppressing signal fluctuations. Moreover, characteristic structural changes 



Page 14 of 24Shen et al. PhotoniX             (2024) 5:1 

throughout the rapid cardiac cycle were visualized with high resolution and SNR. Subtle 
intracellular endocardial-myocardial distance variations, folding motions, valve forma-
tions, and sarcomere details were resolved. The generalized applicability across diverse 
motion-affected imaging contexts highlights the power of data-driven self-supervised 
learning, without requiring task-specific optimizations.

Additionally, the enhancement efficacy increased for more challenging cases with 
lower SNR or fewer active neurons. This suggests the network is effectively learning 
complementary information to the scarce signals directly available in noisy raw data. 
The data-derived spatial priors act as powerful constraints to reconstruct high-fidelity 
structures. This principle of exploiting correlations in unaffected dimensions could be 
extended to temporal, spectral, or radial domains for denoising in other modalities.

For further confirmation, evaluating the method on diverse sample types and micros-
copy modalities could reveal generalizability limitations. We tested our calcium imag-
ing trained model on different sample densities. The analysis in Note S3 and results in 
Fig. S14 show that the denoising quality declined slightly for very dense data, which may 
be improved by incorporating temporal smoothing to assist spatial filtering and apply-
ing super-resolution techniques to provide higher sampling density. We also applied 
our trained model on confocal microscopy [10]. Example images of BPAE cells, mouse 
brain, and zebrafish were corrupted with synthetic noise to generate low SNR inputs for 
denoising (Fig. S15). Despite differences in imaging modality, sample type, and noise 
characteristics from the original training data, our model effectively suppressed noise 
and enhanced visualization (Note S3). By learning to extract maximal useful information 
from the mirror-perspective signals, the network can be applied to strengthen visualiza-
tion for data far beyond its original training distribution.

While showing significant improvements in denoising quality, the model still strug-
gles with extremely noisy data with nonrandom background and non-fluorescent image 
modalities. Limitations remain to be addressed in future work. Firstly, the method 
currently relies on bidirectional scanning during image acquisition to provide pairs of 
dual-perspective information, which requires a high content match between adjacent 
scan lines. Advanced motion correction techniques could potentially enable learning 
from non-aligned lines acquired in a large FOV. A blend of real and synthetic training 
data may balance robustness and accuracy. Secondly, the use of spatial priors makes the 
model susceptible to missing small-scale signals that are corrupted and lack identifiable 
relationships in the raw data. While our analysis demonstrated the high spatial resolu-
tion increase post denoising (Fig. S16) compare to the input, it may come at the inher-
ent cost of marginally reducing spatial resolution compared to pristine noise-free image 
when two sampling lines are not identical. Thirdly, the model was predominantly dem-
onstrated on time-lapse imaging data, although the volumetric vessel imaging showed 
potential 4D application. Evaluating performance on full 4D volumetric data could bet-
ter characterize enhancements to morphological quantification. The framework may 
also need adaptations to scale efficiently to 4D datasets. Additionally, manual labeling 
was used in a limited capacity in this work, primarily for segmenting neurons to quan-
tify motion artifact suppression performance. While manual annotation does introduce 
some subjectivity and human error, we aimed to minimize the impact on results. Some 
alternatives include: using computational spot detection and segmentation algorithms 
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as an initial automated labeling pass, followed by human curation; employing simulated 
data with programmatically generated annotations for training and evaluation; active 
learning approaches that select optimized samples to minimize labeling needs.

In the future, combining complementary strengths of model-based and data-driven 
approaches could improve restoration fidelity, leveraging versatile neural networks along 
with optical models and signal priors. Joint denoising across multimodal datasets could 
harness correlated structural information. Extending the self-supervision concept to 
other imaging domains such as medical, satellite, or computational imaging could fur-
ther demonstrate broad utility. Overall, this deep learning framework pushes the bound-
aries of live fluorescence microscopy. Enhanced SNR and correlation unlock richer 
quantitative insights into microscale biological dynamics. With optimized models and 
hardware, the approach promises real-time video enhancement during experiments. By 
overcoming photon limitations, this methodology helps realize full potential of fluores-
cence microscopy for biological discovery.

Methods
An overall technical roadmap (including software, hardware, experiment, and analysis) 
was presented in Fig. S17.

Optical setups

The in vivo multiphoton upright microscope was equipped with a galvo-resonant scan-
ner for high-speed imaging at 30 Hz with 512 × 512 pixels. Excitation was provided by 
a femtosecond laser (Chameleon Discovery, Coherent) with pulsewidth around 100 fs 
and repetition rate of ~80 MHz. Group delay dispersion was pre-compensated to 8000 
 fs2, which ensured low power of <80 mW for mouse and <20 mW for zebrafish at 890 
nm excitation to minimize photochemical and thermal stress as well as image distortion. 
In contrast, the reported photodamage power was about 120 mW (1,080–1,180 nm, 80 
MHz, 100–250 fs, 3.3 μs/px)[54–56]. The collimated laser beam was guided to the fast 
axis (resonant mirror) and slow axis (galvo mirror) of the galvo-resonant scanner. The 
scanner provided fast two-dimensional raster scanning under the control of two voltage 
signals. At a resonant frequency of 8 kHz and image pixels of 512 × 512, the imaging 
time per frame was 33 ms for slow TP-SSL, and the scan speed per line was about 64 
μs for ultrafast MP-SSL. The fast scan mode with brief pixel dwell times helped reduce 
cumulative energy deposition and associated phototoxicity. However, such rapid reso-
nant scans suffered from poor SNR, which was overcome by self-supervised deep learn-
ing without needing prolonged integration times.

The excitation laser beam was then relayed, scaled and corrected by scan lenses 
(SL50-2P2, Thorlabs) and tube lenses (TTL200MP, Thorlabs) to match the back pupil 
of the objective and produce a planar image plane. A high numerical aperture (NA) 
water dipping objective (N20X-PFH, 20×, 1.0 NA, Olympus) with 2 mm working dis-
tance was used for in vivo imaging. The fluorescence photons emitted from the sam-
ple were collected by the objective and separated from the excitation by a long-pass 
dichroic (DMSP680B, Thorlabs). Another short-pass dichroic (DMSP567R, Thorlabs) 
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was installed in the detection path to split green and red fluorescence. High sensitiv-
ity GaAsP photomultiplier tubes (PMTs; PMT2101/M, Thorlabs) with transimpedance 
amplifier collected the fluorescence signals, providing voltage outputs. Scanner and 
detector I/O were synchronized via a high-speed DAQ (ATS9440, 125M/s) and a high-
performance computing workstation (48 Gb memory, solid state drives).

Animal preparation

Male mice (Balb/c) aged 8-12 weeks were purchased from the Guangdong Medical Lab-
oratory Animal Center. These mice were housed in the animal facilities at the Institute of 
Optoelectronic Engineering, Shenzhen University. All animal procedures were approved 
by the Ethics Committee of Experimental Animals, Medical Department, Shenzhen 
University.

Detailed protocols regarding cranial window procedures have been previously pub-
lished [57–59]. Briefly, the mice were anesthetized using a gas anesthesia system (R500IP, 
RWD) with 1.5-2% isoflurane, and a heating blanket was used to maintain a body tem-
perature of 37°C during surgery. After removing the fur and scalp, a small section of 
skull bone with a diameter of approximately 3 mm was excised using a dental drill. Sub-
sequently, a glass cover glass and a homemade titanium alloy ring were affixed to the 
cranial window using dental cement. For vascular imaging, we synthesized the reported 
photosensitizer with aggregation-induced emission (AIE) characteristics, TPETPABT 
[60], which were prepared according to previous work [61]. The Chemical structure of 
TPETPABT was presented in Fig. S18a, as well as its [1]H NMR and [13]C NMR spec-
tra were probed and shown in Fig. S18b. After inflammation subsided and the cranial 
window cleared, this more established AIE fluorophore (5 mg/kg) were administered to 
the mice via orbital injection. The vascular two-photon imaging in the mouse brain was 
performed immediately after the injection.

For astrocyte imaging, we first performed craniotomy surgery on the mice follow-
ing the above procedures. The acute brain injury caused by the craniotomy induced an 
immune response in the brain. After surgery, 100 μL of Sulforhodamine 101 (SR101) at 
a concentration of 3.3 mg/ml [57, 62] was injected to label astrocytes. The labeling effi-
ciency and brightness of astrocytes peaked about 180 minutes after injection. Thus, the 
astrocytes imaging was performed three hours after the injection.

Zebrafish embryos (CZ62:s843Tg/+(AB)) expressing vascular epithelial cells indicator 
(Tg(kdrl:EGFP)) were purchased from the China Zebrafish Resource Center. The s843Tg 
allele was generated by random integration of pT2(kdrl:EGFP) construct. The zebrafish 
embryos were raised in E3 solution containing 0.003% N-phenylthiourea (P7629, Sigma) 
to inhibit pigmentation after 20 hours post-fertilization. Prior to in vivo imaging, 
zebrafish were anesthetized with 600 μM Tricaine (E10521, Sigma) and mounted in 1% 
low-melting-point agarose  (NuSieveTM GTG TM Agarose, 50080, Cambrex BioScience) 
for vascular two-photon imaging. As identified by the microscope, the GFP fluorescence 
signal was detected in cardiovascular system.

Data processing

We used a flexible framework to integrate modules including data reading/writing, 
model building (training, validation and testing), network architecture (Fig. S1b), loss 
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functions, etc. This framework allows convenient integration of a customized mod-
ules. For example, we wrote a standalone dataset reader to process the collected noise 
datasets (3D stacks) without requiring target images for network training. Training can 
choose between MP-SSL and TP-SSL modes. The self-supervised training data preproc-
essing allows automatic data partitioning. For collinearly bidirectional scanning, where 
the forward scan path x = bt and the backward scan path x = 2a− bt are conjugated, 
with a being the sum of the start point and end point of the scan path, and b being the 
slope. The pixel number collected in the y direction is twice that in the x direction, and 
the stack dimensions are N× 2N× T , where N is the number of x-direction pixels, T 
is the number of frames. The data preprocessing module partitions them into two sets 
of N×N× T for network input and N×N× T for target (Fig. S1c). This self-super-
vised learning utilizes the high semantic information correlation between the conjugated 
lines, the randomness of noise, and the frequency mismatch of fringe artifacts across 
lines to achieve denoising and background removal.

For normal unidirectional or bidirectional microscopic scanning modes, we also pro-
vide another way to construct the dataset. The stack of dimensions N×N× T is par-
titioned into two sets of N×N× T/2 for network input) and N×N× T/2 for target, 
where the odd rows of each frame and the odd rows of the next frame constitute a 
new frame of the input set, and the even rows of each frame and the even rows of the 
next frame constitute a new frame of the target set (Fig. S1d). This ensures pixel spa-
tial uniformity within images and avoids dimension mismatch with internal network 
operations.

The input and GT images were produced in 8-bit TIFF files with customized macro 
processing algorithm in Fiji [63] to reduce storage requirements, speed up data read, 
write and transfer, and accelerate network train and test. To cope with intensity varia-
tions across different samples and imaging platforms, the mean of the entire stack is sub-
tracted from each input stack after reading. To alleviate data dependence of the method 
and further eliminate overfitting, we adopted 12 times data augmentation to generate 
sufficient training pairs from small amounts of data. The spatial overlap ratio is set to 
0.25 for 512 × 512 pixels. The dimension of each substack is 150 × 150 × 100. For each 
training pair, one random transform is chosen, including horizontal flip, vertical flip, 90° 
left rotation, 180° rotation, 90° right rotation, and no transformation. Additionally, the 
input and target are randomly swapped with a probability of 0.5.

In the absence of experimental noise-free and artifact-free images, temporal averag-
ing was utilized to obtain approximations of the ground truth morphology. For astro-
cyte data, 300 raw input frames were averaged to estimate the static cellular structure 
(Fig. 2j). This provided a reference for computing error maps and correlations to quan-
tify denoising performance. For vasculature, high laser power was utilized to acquire 
high SNR data visualizing clear morphology (Fig.  3a). Mixed Poisson-Gaussian noise 
was then digitally added to simulate low SNR input data (Fig. 3b, g). The original high 
SNR images served as pseudo-ground truth references for evaluating SNR and SSIM 
improvement.
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Network architecture, training and inference

The network adopts a 3D U-Net topology [32, 64] with an encoder-decoder architec-
ture. All operations inside the network are performed in 3D, including convolution, 
max pooling, and interpolation. The network consists of a contracting path to capture 
context and a symmetric expanding path that enables precise localization. The con-
tracting path contains 4 encoder blocks, each with two 3 × 3 × 3 convolutions fol-
lowed by a 2 × 2 × 2 max pooling operation with stride 2 for downsampling. At each 
downsampling step, the number of feature channels is doubled starting from an initial 
16 channels. Pooling reduces volume size while expanding feature channels to capture 
context and abstract representations of the input.

The expanding path consists of 4 decoder blocks, each with an upsampling of the 
feature map followed by a 2 × 2 × 2 convolution (up-convolution) to reduce num-
ber of channels by half. This is followed by concatenation with the correspondingly 
cropped feature map from the contracting path. Two 3 × 3 × 3 convolutions are then 
applied to integrate localization information from the contracting path. Cropping and 
concatenation enables precise localization by integrating high-resolution features 
from earlier layers. The last decoder output goes through a 1 × 1 × 1 convolution to 
reduce channels to number of desired output classes. This is passed through a final 
3D convolution to generate the predicted output with the same spatial dimensions as 
the input.

Skip connections between the contracting and expanding paths provide global 
context as well as localized information to enable precise voxel-level prediction. The 
overlapping field of views at different depths give the 3D U-Net a large receptive field 
for incorporating extensive context.

The hyperparameters model architecture and training include: self-supervised 
mode: MP-SSL or TP-SSL; spatial patch size for reducing memory: 150 pixels; patch 
overlap factor: 0.2; temporal patch size for reducing memory: 100 frames; batch size 
per GPU: 1; number worker per GPU: 2; optimizer: Adam; learning rate: 0.00005; loss 
function: L1 + MSE; training iterations: 100,000; no warm up; validation frequency: 
10,000; save image during validation: true; data augmentation: flips, rotations, crops.

The abovementioned data augmentation strategies are applied to each training pair. 
The weight of L1 loss is �1 = 0.5 and the weight of MSE loss is �2 = 0.5 for the loss 
function in training. We used adaptive moment estimation (Adam) [65] as the opti-
mizer of the generator, β1 = 0.5 , β1 = 0.999 . More details could be found in the public 
codes. This flexible framework allows convenient switching of networks. In the public 
codes, we also provided alternative networks such as 3D RCAN.

Synthesis of neuronal imaging data

We quantitatively evaluated the MP-SSL method on synthetic neuronal imaging data 
and for comparisons with TP-SSL. The simulated processes involve generation of 
neural volume and activity, modeling of light propagation through scattering volume, 
and microscopic scanning and image formation [33]. The vasculature was first gener-
ated throughout the volume, followed by somata, dendritic and axon. The spiking cal-
cium dynamics of each neuron were simulated and converted to fluorescence. Then, 
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the optical wavefront corresponding to the TPLSM optics propagated through the 
scattering volume, producing a spatially variant point spread function to create rela-
tive intensity masks. Realistic images are rendered by scanning the composite volume 
using the optical model output, incorporating noise and motion arising from light 
collection, amplification and digitization processes. The simulation parameters are 
listed in Table S2, with defaults used for those unspecified. The simulated data exhib-
its spatiotemporal realism highly similar to experimentally obtained data and were 
used for network performance and generalization verification.

Neuronal and vascular segmentation

We segmented neurons manually with a limited view that ensuring one neuron inside 
the cropped view. The calcium trace of the segmented neurons was extracted using peak 
matching to avoid motion drifts. We also employed CNMF [39] algorithm with motion 
correction [40]. The processing pipeline included motion correction, source extraction 
and deconvolution. To ensure that the algorithm extracted the same neurons from the 
raw input, denoised output, and pristine reference images for comparison, we concat-
enated three types of images, i.e. reference-noise-restoration in the temporal dimension: 
N×N× 3T . The parameters for calcium imaging data analysis are listed in Table S3, with 
defaults used for those unspecified. After processing, the extracted calcium traces were 
divided into three corresponding segments. Nevertheless, this method would extract more 
ambiguous neurons due to fluorescent instability caused by dramatic motional drifts.

To segment the time-lapse vascular stacks, we used SAM-Track, which combines seg-
ment-anything model (SAM) [48] for automatic key-frame segmentation, and decoupling 
features in associating objects with transformers (DeAOT) [49] for efficient multi-object 
tracking and propagation. The pretrained model for global segmentation was “r50_dealtl”, 
with a SAM gap of 4, 16 points per slide and a max objective number of 255.

4D volumetric visualization

For 4D visualization to reveal spatiotemporal dynamics of the astrocytic and vascular vol-
umes, we implemented custom Matlab scripts and built-in functions to generate time-lapse 
volumetric images. The brightness of the images before and after denoising is adjusted to 
have similar visual effects [32]. These volumetric images were shown in the movies. 2D 
visualization of the volumetric data were obtained with “3D Project” (Brightest Point) in 
Fiji. Orthogonal views were also obtained using Fiji. Images with a relatively low brightness 
were regulated by adjusting the dynamic ranges (brightness/contrast) in Fiji to better dis-
play the indiscernible morphological features [15].

Performance metrics

The quality metrics, including 2D and 3D correlation and SSIM, 3D SNR were calculated 
between the signal (input or output) intensity, Isig and the reference intensity, Iref  . Pearson 
correlation coefficient ρ is formulated as

(1)ρ =
dims=1,2,3 Isig − I sig Iref − I ref

(Ntotal − 1)σ sigσref
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where  I sig are σsig are the mean and SD of Isig , respectively. Iref  are σref  are the mean and 
SD of Iref  , respectively. Dimensional subscript dims = 1,2,3 correspond to trace ( 

∑

t I ), 
frame ( 

∑

x,y I ), and stack ( 
∑

x,y,t I ). Ntotal is the total pixel number.
SNR is obtained by computing the ratio of summed squared magnitude of Isig to that of 

the noise Inoise = Isig − Iref :

where RSS is the root-sum-of-squares:

SSIM is based on the computation of luminance, contrast, and structure. The over-
all index is calculated as

where σsig ,ref  is the cross-covariance for Isig and Iref  . By default, C1 = (0.01× L)2 and 
C2 = (0.03× L)2 , where L is the specified dynamic range value. For example, the default 
dynamic range is 255 for images of data type uint8. The function uses these regulariza-
tion constants to avoid instabilities in image regions where the mean or SD are close to 
zero.

The quantitative assessment scores, RSE and RSP, as well as the error maps were 
obtained by estimating the resolution scaling function, registering the restored image 
against the reference image, and rescaling the restored image intensity with the reso-
lution scaling function estimation. RSE and RSP can be calculated through a root-
mean-square error between IRS (created by applying the RSF to the restored image) 
and the reference image Iref :

The error map is the pixel-wise absolute difference between the restored and refer-
ence image. We used NanoJ-Squirrel Plugin [41, 42] in Fiji to compute these metrics 
and visualize the discrepancy of the input and output images compared to the average 
images.

(2)SNR = 20log10
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Statistics and reproducibility

Sample sizes and statistical analyses including the mean, SD, and significant difference 
were specified in figure legends and text for each experiment. Tukey box and whisker 
plots showed the statistical correlations and SNR, where box indicated the upper and 
lower quartiles, while the line inside the box represented the median. The lower whisker 
extended to the first data point greater than the lower quartile minus 1.5 times the inter-
quartile range. Similarly, the upper whisker extended to the last data point less than the 
upper quartile plus 1.5 times the interquartile range. Outliers were marked with small 
dots. Three black lines in the violin plot indicate quartile positions, where solid line rep-
resents median. The statistical differences, p values were located above the data. Repre-
sentative frames were shown in the figures, with similar conclusions for other frames.

Abbreviations
TPLSM  Two-photon laser-scanning microscopy
FOV  Field of view
SNR  Signal-to-noise ratio
DeepBID  Deep learning for biodynamics imaging denoising and deblurring
MP-SSL  Mirrored perspective self-supervised learning
TP-SSL  Time-lapse perspective self-supervised learning
PSF  Point spread function
SSIM  Structural similarity index measure
CNMF  Constrained non-negative matrix factorization
RSE  Resolution scaled error
RSP  Resolution scaled Pearson coefficient
RTLS  Residence time line scanning
SFA  Scanning fringe artifacts
NA  Numerical aperture
PMT  Photomultiplier tube
AIE  Aggregation-induced emission
Adam  Adaptive moment estimation
SAM  Segment-anything model
DeAOT  Decoupling features in associating objects with transformers
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have been integrated in the model. Our data and codes will be made publicly available before publication.
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