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Abstract 

The complete description of a continuous‑wave light field includes its four fundamen‑
tal properties: wavelength, polarization, phase and amplitude. However, the simultane‑
ous measurement of a multi‑dimensional light field of such four degrees of freedom 
is challenging in conventional optical systems requiring a cascade of dispersive 
and polarization elements. In this work, we demonstrate a disordered‑photonics‑
assisted intelligent four‑dimensional light field sensor. This is achieved by discovering 
that the speckle patterns, generated from light scattering in a disordered medium, are 
intrinsically sensitive to a high‑dimension light field given their high structural degrees 
of freedom. Further, the multi‑task‑learning deep neural network is leveraged to pro‑
cess the single‑shot light‑field‑encoded speckle images free from any prior knowledge 
of the complex disordered structures and realizes the high‑accuracy recognition of full‑
Stokes vector, multiple orbital angular momentum (OAM), wavelength and power. 
The proof‑of‑concept study shows that the states space of four‑dimensional light field 
spanning as high as 1680=4 (multiple‑OAM) × 2 (OAM power spectra) × 15 (multiple‑
wavelength) × 14 (polarizations) can be well recognized with high accuracy in the chip‑
integrated sensor. Our work provides a novel paradigm for the design of optical sensors 
for high‑dimension light fields, which can be widely applied in optical communication, 
holography, and imaging.
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Introduction
Complex light field generation, modulation and detection are the cornerstone of 
modern optics and photonics research. The rise of metamaterials and metasurfaces 
using artificial subwavelength structures to tailor light-matter interactions has cre-
ated unprecedented capability of light field manipulation either in the free space or 
on-chip circuits [1–5]. In particular, metasurface conventionally fabricated on an 
ultra-thin interface via nanofabrications, modulates the wavefront of light through 
spatially varying geometric structures [6, 7]. Since the optical response of a metas-
urface is engineered locally addressing large degrees of freedom, it has become a 
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mainstay platform for harnessing the intrinsic high-dimension of light, such as ampli-
tude, phase, polarization and wavelength, etc [8–10]. In contrast to the fast devel-
opment of light field manipulation, the integrated optical detection systems for 
multi-dimensional light fields are only emerging recently [11–13], although they have 
important applications in optical communications, biomedical imaging and autono-
mous vehicles [12].

The conventional photodetectors only measure light intensity, and the intrinsic 
high-dimension of light collapse in the simply photo-electric conversion process. By 
leveraging the optical response of functional materials/microstructures, the novel 
integrated light-field sensors are developed, capable of resolving light polarization 
[14, 15], wavelength [16], incident angle [17] or orbital angular momentum (OAM) 
[18], etc. On the other hand, the direct integration of metasurface with photodetectors 
(arrays) for high-dimension light detection is attracting great attention [11, 19–23]. 
Nevertheless, so far these multi-dimensional light-field sensors require sophisticated 
designs and precise fabrications, and nearly all of them are optimized for no more than 
three featured properties of light [12–14, 16, 19–23], which are fundamentally limited 
by their internal degrees of freedom in the light transmission and detection systems 
[24–26]. Besides, the signal cross-talks in the measurements of high-dimension light 
due to the wave dynamics rapidly increase as the increase of detection freedom, and 
this challenges the conventional deterministic mapping or demultiplexing method 
based on the physics-driven models.

Light scattering by disordered media is a ubiquitous phenomenon that can be seen 
everywhere in life, such as sunset glows. These disordered structures of high internal 
degrees of freedom can support numerous transmitting channels of light. Although the 
light field can be evidently scrambled by the multiple scattering in disordered media, the 
optical information is not lost and thus contained in a speckle pattern since the scatter-
ing is elastic [27–29]. Basically, the input light field can be recovered from these speckle 
patterns if the transmission matrix is determined. However, when the system becomes 
large and complex (multiple scattering) and is further coupled with the high-dimension 
light, it will be challenging to solve the inverse problem from the conventional trans-
mission matrix method [29]. In this work, we propose the concept of integrated four-
dimensional light field sensors by harnessing light scattering in disordered structures via 
multi-task-learning (MTL) deep neural network (DNN) [30, 31] as illustrated in Fig. 1. 
The disordered nematic liquid crystals (NLC) forming schlieren textures via self-assem-
bly provide more degrees of freedom of transmitting channels for light and generate 
speckle patterns. We reveal theoretically and experimentally that these speckle patterns 
are intrinsically correlated to the input high-dimension light field, i.e., polarization, 
wavelength, OAM and power, from the structural similarity (SSIM) index [32]. Further-
more, by leveraging a trained MTL-DNN, we demonstrate an intelligent four-dimen-
sional light field sensor capable of simultaneously extracting the full-Stokes parameters, 
multiple-wavelength, multiple-OAM and optical power from the single-shot speckle 
patterns by a CMOS image chip. This data-driven and deep learning method overcomes 
the shortcomings of conventional light field decoding systems based on physical theories 
or numerical modelings since the signal processing can be automatically tracked to the 
optimal sensing data via a user-defined cost function [13, 33].
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Results and discussion
Properties of speckle patterns correlated to high‑dimension of light

The explicit calculation of light propagation and scattering in disordered NLC film is 
complex and can not provide clear physics intuition (see Methods). Here we use a sim-
plified model of square NLC lattices of random director distributions (Fig. 2a), and cal-
culate the far-field speckles as shown in Fig. 2b (Supplementary Section 2). The lattice 
constant of 20 µ m is determined from the autocorrelation function of measured NLC 
director distributions (Supplementary Fig. S1). We implement SSIM index (Supplemen-
tary Section 3) to quantitatively evaluate the correlations of the speckle patterns to high-
dimension light field [32]. The larger SSIM difference of speckles among different input 
light fields indicates higher optical-field sensitivity of disordered media.

We first explore the influence of disorder strength on light-field sensing. The simulated 
NLC film is characterized by the disorder parameter ε (0 < ε ≤ 1) , and it indicates the 
range of the random rotation angle of NLC director θε(x, y) , which obeys a uniform distri-
bution function fε(θ) = {1/επ , 0 < θ ≤ επ; 0, otherwise} [34] (Supplementary Fig. S2). 
In Fig. 2c, we show the calculated SSIM of speckles as a function of the linear polariza-
tion angle of light under different disorder parameters. When ε = 0 , the orientation of 
the NLC directors is homogeneous, hence the element acts as a uniform medium and 
cannot respond to light polarization via SSIM. By incrementally increasing the disor-
der, the similarity between simulated speckle patterns is decreased gradually in a cer-
tain range of polarization angle, since the wavefront of input light is spoiled. The SSIM 
contrast, defined as the maximal SSIM change in a parameter space, is monotonously 
increased with the disorder strength and is greatest near the critical point ( ε = 1 ), as 
shown in Fig. 2d. A similar trend of SSIM on the disorder strength is found for OAM and 

Fig. 1 Schematic of integrated four‑dimensional light field sensors via disordered nematic liquid crystal 
(NLC) medium, imaging chip and deep learning. The input high‑dimensional light field of various 
wavelength, polarization, orbital angular momentum (OAM) and power, are scattered and encoded by a 
disordered NLC film, forming diversified speckle patterns and being captured in a CMOS imaging chip. The 
speckle image data can be regarded as states in a n‑dimension vector space. The multi‑task‑learning (MTL) 
deep neural network (DNN) as a decoder maps the measured vector to the high‑dimension space of light 
field including OAM, wavelength, power and polarization, through a user‑define cost function
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wavelength parameters (Supplementary Fig. S3 and S4). We note that the fabricated NLC 
film approximately corresponds to a fully disordered structure ( ε ≈ 1 , Supplementary Fig. 
S1).

Figure  2e shows the simulated (upper panel) and measured (lower panel) SSIM of 
speckle patterns under different polarized light incidences. The SSIM of speckles cor-
responding to a polarized light input is minimal when its linear polarization angle is 90 
deg compared to the reference polarization state of 0 deg. The SSIM fluctuates with the 
change of input polarization states because the similarity among the speckles is fun-
damentally related to the distance of polarization states on Poincaré sphere (Fig. S5). 
Figure 2f shows the statistical response of speckle patterns with different OAM modes 
input, i.e. topological charge l = ±1,±3,±5 . Since the helical-phase front of OAM 
modes is easily distorted by the anisotropic inhomogeneity of NLC film, SSIM rap-
idly decreases with the change of OAM modes numerically and experimentally. As for 
the light wavelength dependency, numerical results in Fig. 2g (upper panel) show that 
SSIM is monotonously decreased with the increase of wavelength, which is consistent 
with experimental measurements. Basically, the local phase retardation for transport-
ing light in NLC medium can be written as 2π(no − ne)d/� , where no and ne are the 
ordinary index and extraordinary index, respectively; d is the film thickness, � is the 
light wavelength. Consequently, the far-field diffracting patterns shaped by disordered 
NLC medium depend on the input light polarization, phase distribution, wavelength and 
power theoretically.

Overall, from the SSIM index evaluations, the speckle patterns from a disordered NLC 
film are strongly correlated to the input light field properties. Nevertheless, it would be 

Fig. 2 Principles of light field interactions with disordered NLC medium. a Simplified model composed of 
randomly LC directors arranged in a square lattice. Inset: Schematic of in‑plane director angle θ relating to 
the x‑axis. b Simulated in‑plane random distributions of NLC directors (left panel), and their far‑field diffracted 
speckle patterns (right panel) with Gaussian beam input (waist radius of 1 mm). The ordinary refraction 
index and extraordinary refraction index of NLC medium are set as 1.517 and 1.741, respectively; and the 
NLC film thickness is set as 20 µ m. The scale bar is 2 mm. c Calculated structural similarity (SSIM) index of 
speckle patterns for various linear‑polarization light input in a range of disorder strength ( ε ). d Calculated 
SSIM contrast for various disorder parameter ( ε ) under linear‑polarization light input. e,f Simulated and 
experimental results of SSIM index of speckle patterns for different polarized light input (e) and different 
OAM‑state input (f). The light wavelength is fixed as 660 nm. g Simulated and experimental results of SSIM for 
speckle patterns under different light wavelength input



Page 5 of 14Zhu et al. PhotoniX            (2023) 4:26  

challenging to differentiate a multi-dimensional light field of multiple properties, by sim-
ply statistically analyzing the speckle patterns. First, the statistical features, such as SSIM 
index, can neither have single-valued mapping nor a monotonous relation to a single 
optical property of light. Regarding the infinite number of states for polarizations and 
OAM of light, their corresponding relations to SSIM make it impracticable to conduct 
the pre-calibrations of SSIM as indicated from Fig. 2e, f. Second, the random nature of 
NLC director distributions introduces strong coupling and mixing effects for the multi-
dimensional light field input. For example, the multi-wavelength and multi-OAM states 
are constructively encoded in the diffracting patterns, and thus the deterministic one-to-
more mapping simply from SSIM index is nearly impossible.

Methodology of MTL algorithms

To tackle these challenges, here we use deep learning methods to process the as-
imaged speckle patterns in no need of knowing the physical properties of devices in 
advance, supporting a transferable architecture for the multi-dimensional light field 
sensing, as shown in Fig.  1. We adopt a hard-parameter sharing MTL-DNN archi-
tecture (Supplementary Section 6), which consists of a shared encoder and two task-
specific heads. A multi-layer convolutional neural network (CNN) plays the role of 
shared encoder to extract general feature maps from the speckles, branching out into 
two independent multi-layer fully-connected layers for classification and regression, 
respectively. The classification head is implemented to recognize the discrete values of 
OAM modes and wavelengths, while the regression one predicts the continuous val-
ues of the power and polarization states of light.

It is well known that the form of loss function has a great impact on the power of 
training DNN models. In this study, we introduce the idea of homoscedastic uncertainty 
to adaptively decide the values of weights. The loss function of an MTL-DNN is con-
structed as the weighted linear sum of the losses for each individual task, which is sensi-
tive to each task via the settings of weights [35]:

where the regression loss function L1 and the classification one L2 are weighted by 
observation noise parameters σ1 and σ2 , respectively; σ1 and σ2 are used to capture 
relative confidence between tasks and tune the weights of the single-task losses during 
training processes (Supplementary Section 6). Since the relative confidence reflects the 
homoscedastic uncertainty of prediction outputs for each task, the program tends to 
suppress the effect of the task with high uncertainty, but increase the weight of the task 
with low uncertainty. This strategy makes the learning process more balanced as well as 
effective.

In the following sections, we separately optimize the MTL-DNN model for three intel-
ligent sensing functions, i.e., full-Stokes vector sensing, multiple-OAM sensing and four-
dimensional light field sensing.
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Characterizing the performance of intelligent full‑Stokes polarimetry

Polarization is an intrinsic characteristic of electromagnetic waves that describes the 
geometric path traced by the wave’s electric field vector [36]. The conventional polariza-
tion measurement in free space is mainly based on the division-of-amplitude or division-
of-time approach [20, 23]. The Stokes vector is widely used to describe the polarization 
behavior of light, mainly because polarization ellipse is an amplitude description of 
polarized light and cannot be directly measured [37]. In this section, we demonstrate 
intelligent full-Stokes polarimetry by leveraging DNN. Theoretically, when a coherent 
light beam passes through the disordered NLC film, its polarization state and optical 
power are implicitly encoded in the speckle patterns. Because of the continuous values 
of the Stokes vector (polarization state) and power, we employ the regression head of 
the MTL-DNN model to decipher the optical properties of unknown light beams. The 
predicted label vector (S0, S1, S2, S3)T of four Stokes parameters are constructed, where 
S1 , S2 and S3 are obtained at the output layer of the regression head, and S0 is calcu-
lated by the equation S0 = (S21 + S22 + S23)

1/2 considering the coherent light input. The 
datasets of captured 20,000 speckle images are divided into three subsets, i.e., train-
ing set (80%), validation set (10%) and testing set (10%). After training procedures, we 
plot the normalized Stokes vector for different input/predicted polarizations of various 
optical power as shown in Fig. 3a. Figure 3b further plots the projected light polariza-
tion of test results onto the S1/S0 − S2/S0 , S2/S0 − S3/S0 and S1/S0 − S3/S0 planes 
for better clarity and error analysis. The results show that the predicted Stokes vectors 
are in good agreement with the input parameters. Figure 3c shows the predicted opti-
cal power S0 as a function of the input values, and the average error for the predicted 
power of light compared to the measurement is about 5%. Figure 3d shows the relation-
ship between the loss function and the number of training epochs. With the increase in 
the number of iterations for the training dataset, the loss is decreased significantly and 
converged to around 0.005. We define the error on the Stokes vector reconstruction as 
σ = arccos((S1S

′

1 + S2S
′

2 + S3S
′

3)/(S0S
′

0)) , where Si and S′

i (i=0,1,2,3) are input and pre-
dicted Stokes vector [23]. It is clear that σ corresponds to the angle between the input 
and the reconstructed Stokes vector on the Poincaré sphere. Therefore, the proposed 
intelligent full-Stokes polarimetry is capable of reconstructing the light polarization with 
a high accuracy and the average deviation angle 〈σ 〉 is as small as 7◦ , which is comparable 
to the state-of-the-art results of computational polarimetry [15, 23].

Characterizing performance of intelligent multiple‑OAM detection

Light with helical phase wavefront featuring exp(ilϕ ) (where l and ϕ represent the top-
ological charge and azimuthal angle, respectively) carries OAM, which has boosted 
advanced optical applications in communications, holography encryption, tweezers, 
high-order quantum entanglement and nonlinear optics [38–42]. The measurement of 
the topological charge of the OAM beam is a nontrivial task for many optical applica-
tions. The conventional measurements of topological charge are based on the deter-
ministic interference and diffraction properties of OAM modes, which often require 
a precise alignment of the optical path and are difficult for compact integration [39, 
43]. Recently, the speckle-based deep learning methods for OAM mode classification 
are being developed, and they have found applications in the OAM-multiplexed data 



Page 7 of 14Zhu et al. PhotoniX            (2023) 4:26  

transmission [44–48]. However, it is still challenging to realize simultaneous recogni-
tion of multiple-OAM states and their power spectra of different OAM channels, mainly 
limited by the single-task learning configuration, although the measurement of multiple-
OAM spectra is crucial for high-capacity information processing systems [49, 50].

Here we demonstrate a novel MTL-based intelligent multiple-OAM sensing sys-
tem to classify the multiple-OAM states and estimate their power spectra as shown 
in Fig. 4a. The major components of MTL-DNN consist of a four-layer CNN and two 
independently task-specific fully-connected layers (FCs) for the classification of OAM 
modes and the regression of their power spectra. In essence, the feature maps extracted 
from the input speckle images via the four-layer CNN are shared by the task-specific 
FCs; meanwhile, the task-specific FCs are used for learning a nonlinear mapping from 
features to individual targets. Several dropout layers are embedded between every 
two three-layer FCs to prevent overfitting and improve the generalization ability.

Experimentally, the calculated phase profile is loaded into a spatial light modu-
lator (SLM), and the diffracted multiple-OAM beam (Supplementary Section  5, 
Supplementary Fig. S7) is then launched to the disordered NLC medium to gener-
ate speckle patterns in the far-field regime. To reduce the performance degradation 
caused by discrete phase pattern and phase-only modulation on generated collinearly 
multiple-OAM beams, we design OAM base with a state interval of 2 for proof-of-
concept demonstration [51]. We recorded 25,000 speckle images covering 20 different 
multiple-OAM states along with various power spectra. In the training stage, differ-
ent multiple-OAM light field information and their corresponding speckle images are 
used to train the MTL-DNN model. Labeled samples are randomly split into training, 
validation and testing subsets in the ratio of 8:1:1. A MTL loss function is well-defined 
to adaptively balance the weights of two tasks during the training procedure. After the 
optimization process, the network is able to recover the multiple-OAM states infor-
mation directly from a single speckle pattern. From Fig. 4b, it shows that the loss func-
tion of the regression and classification tasks converge to ∼ 3× 10−3 and ∼ 1× 10−8 , 
respectively. And thus the total loss function of the MLT-DNN for multiple-OAM 
recognition is ∼0.02. Figure  4c shows the truth table for multiple-OAM states 

Fig. 3 Full‑Stokes polarimetry by leveraging DNN. a Polarization states from the DNN predicted results (solid 
circles) and their corresponding input values (hollow circles) are plotted in the Poincaré sphere. The symbols’ 
colors differentiate the optical power for the input and predicted states. b The results from (a) are projected 
onto the normalized S1 − S2 , S1 − S3 and S2 − S3 planes for better clarity and analysis. c Predicted power ( S0 ) 
as a function of incidence power. The red area corresponds to a 5% error in power measurements. d The loss 
function versus epochs for the training and testing datasets
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classification, and the recognition accuracy of twenty kinds of multiple-OAM states 
reaches 100%. In addition, Fig.  4d shows a comparison between the reconstructed 
OAM power spectra and the input results. It can be found that all the components 
of predicted results agree well with the input values. As far as we know, the proposed 
intelligent light-field sensor is for the first time demonstrated to realize the multiple-
OAM spectra resolution, which will stimulate applications in OAM-based holography, 
imaging and communications.

Intelligent single‑shot reconstruction of four‑dimensional light fields via integrated 

sensors

In this section, we discuss the potential of using disordered NLC film and MTL-DNN 
to achieve the complete single-shot reconstruction of realistic four-dimensional light 
fields including polarization, multiple-OAM, multiple-wavelength, and power. The dis-
ordered NLC medium of high degrees of freedom provides rich scattering channels to 
the high dimension of light, which lays the foundation for direct single-shot recognition. 
We assemble the disordered liquid crystal cell and commercial imaging chip for proof-
of-concept demonstration, as shown in Fig. 5a. The high-dimension light fields gener-
ated from the home-made optical system (Fig. 5b, see Methods) are directly imaged and 
decoded in the integrated sensors. We would like to note that the integrated sensing 
scheme significantly reduces the light propagation distance of the millimeter-scale and 
influence the diffracted speckle patterns compared with that of long-distance diffrac-
tion of tens of centimeter-scale (Supplementary Fig. S9), while their predicted results via 
the MTL-DNN are comparable (Supplementary Fig. S10). The decoding of high-dimen-
sional properties of light from the single-shot speckles is not a trivial task considering 

Fig. 4 Intelligent multiple‑OAM states sensing. a Schematic of multiple‑OAM state detection empowered 
by MTL‑DNN. The multiple‑OAM state composing three weighted OAM modes is produced via a superposed 
phase plate. The multiple‑OAM state is scattered by the disordered NLC device, and the generated speckle 
images are input to the MTL‑DNN. The multiple‑OAM states and their power spectra are recognized by two 
independently task‑specific fully‑connected layers. b The loss function on the training epochs numbers for 
train and test datasets of multiple‑OAM states: (i) regression loss function L1 ; (ii) classification loss function 
L2 in semi‑log axis; (iii) total loss function L . c The confusion matrix of 20 multiple‑OAM states labeled 1‑20, 
reporting accuracy of 100%. The right panel lists the OAM mode compositions for the different multiple‑OAM 
states. d Four typical input and predicted spectra of multiple‑OAM states. The predicted results agree 
reasonably well with the input spectra
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the strong linear and nonlinear coupling in the light scattering and detection process. To 
cope with this difficulty, we continue to use the MTL-DNN model for previous multiple-
OAM detection while making slight modifications in its output layers to meet specific 
requirements. We apply linear extrapolation and impose random noise on the expanded 
datasets. The signal-to-noise ratio (SNR) is defined as SNR = −10 lg (µ/Is) , where µ 
and Is represent the variance of noise and intensity of original measured image. Here, 
random noise with a SNR of 5-15 dB is imposed to generate a total of 120,000 speckle 
images based on the original 336 measured images. The extrapolation is appropriate 
based on two methods: (1) The speckle images are scaled linearly with the excitation 
power; (2) Polychromatic speckles are considered as a linear superposition of mono-
chromatic speckles. These techniques are widely used in machine learning studies when 
a larger training set was desired [15].

After training MTL-DNN model, the loss function stops at ∼0.08 with classifica-
tion loss of ∼0.03 and regression loss of ∼5×10−3 (Fig. S8). Using the trained model, 
the input multi-dimensional light fields can be completely recovered from single-shot 
speckle images. Figure  5c-f show the comparison of input and predicted results of 
16 typical states of high-dimension light fields composing different combinations of 
polarization, multiple-OAM, multiple-wavelength and intensity, which clearly indi-
cate the high recognition accuracy of the deep learning network. Since it is not intui-
tive to simultaneously illustrate the predicted results of such four properties of light, 
we have to fix one property of light and plot the remaining dimensions. To further 
validate the effectiveness of the proposed intelligent sensor, the mean squared error 
(MSE) between the input value and predicted value are implemented. The reconstruc-
tion error of polarization, power, wavelength and multiple-OAM as a function of SNR 
for high-dimension light is shown in Fig. 5g. The results indicate that the light-field 
sensor can realize high-dimension light field detection with high fidelity at a relatively 
high noise level (SNR ≥ 10 dB). In the current proof-of-concept study, the states space 
of a four-dimensional light field is as high as 1680, spanning by 4 multiple-OAMs, 2 
OAM-power-spectra and 15 single-/multiple-wavelength and 14 polarizations, which 
can be well recognized with high accuracy. The states space can be readily extended 
(Supplementary Section 8) if more experimental data are included in the training net-
work. As far as we know, this is the first demonstration of complete light field con-
struction of four universal degrees of freedom, i.e., wavelength, polarization, OAM, 
and power via an integrated sensor, which provides a new paradigm shift in the com-
plex light-field manipulations and detections.

Conclusions
In summary, we have demonstrated an integrated intelligent four-dimensional light field 
sensor enabled by disordered anisotropic medium and deep learning. Our results unam-
biguously show that the complete information of light including wavelength, polariza-
tion, OAM, and power can be decoded simultaneously via a single-shot speckle image 
from the disordered anisotropic medium. Compared with the conventional light field 
sensing systems by cascading numerous bulky opto-electro-mechanical elements along 
the optical path, this developed concept of the intelligent optical sensor provides a dis-
ruptive technology for the ultimate multi-dimensional light field detection. The current 
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disordered NLC film is fabricated via self-assembly, and we envision that for practical 
applications, the photo-patterning technique can be implemented to generate arbitrar-
ily-designed mesostructured NLC film with high repeatability [52, 53]. On the other 
hand, the developed speckle-based light field-sensing configuration can also be trans-
ferred to the multimode fiber scheme [46, 54, 55], and the extended degrees of freedom 
for high-dimension light encoding and decoding with ultrahigh data capacity can be 
realized. Furthermore, it is anticipated to construct a photonic neural network to imple-
ment machine learning, paving the way for on-chip all-optical light field sensing.

Fig. 5 Demonstration of integrated four‑dimensional light field sensors. a Photograph of integrated light 
field sensors composing a liquid crystal cell and imaging chip. The inset is the crossed‑polarized optical 
image of the disordered liquid crystal film, showing schlieren textures. The black arrows are the polarizer 
and analyzer directions. The scale bar is 150 µ m. b Schematic of the experimental setup. SLM: spatial light 
modulator, AOTF: acoustic‑optical tunable filter, SC laser: super‑continuum laser. c,d The typical input (left 
panel) and predicted results (right panel) of multiple‑OAM modes in combinations of four polarizations ( P1 , 
P4 , P7 , P9 ) at the wavelength of (c) 650 nm and (d) 660 nm. The labeled light wavelength is predicted by the 
MTL‑DNN rather than predetermined. e,f The typical input (left panel) and predicted results (right panel) for 
the poly‑chromatic light field in combinations of four polarizations ( P1 , P4 , P7 , P9 ) for (e) multiple‑OAM state 
1 and (f) multiple‑OAM state 2. These polarization states Pi are illustrated in Fig. 2e. The input power spectra 
of multiple‑OAM state 1 are l = −1 (20%), 1 (50%), 3 (30%); the input power spectra of multiple‑OAM state 
2 are l = −3 (50%), ‑1 (30%), 3 (20%). The labeled multiple‑OAM state is predicted by the MTL‑DNN rather 
than predetermined. g The reconstruction error of polarization, power, wavelength and multiple‑OAM on the 
signal‑to‑noise ratio (SNR)
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Methods
Device fabrications

The nematic liquid crystal (NLC) film (E7, Jiangsu Hecheng Display Technology) is 
sandwiched between two glass plates coated with indium-tin-oxide. The film thickness is 
controlled by spacers with a thickness of 20 µm.

Optical measurements

The spatial director distributions of the NLC film is measured by a commercial bire-
fringence imaging microscope (Crystalent-50, Ningcui). The multi-dimensional light 
field is generated by a home-built optical system, which consists of a wavelength-tunable 
module, a phase modulation module and polarization tuning module. The wavelength-
tunable module is a super-continuum laser (YSL SC-Pro) filtered by an acoustic-optical 
tunable filter (AOTF, YSL AOTF-Pro bandwidths ∼ 4 nm). The spatial light modulator 
(SLM, UPOlabs HDSLM80R-Plus) is used to control the phase wavefront of the beam. 
The polarization state of light is modulated by a �/2 plate and a �/4 plate. The diffracted 
multi-dimensional light field in disordered NLC film is captured by a home-built imag-
ing system (MIchrome 5 Pro, Shanghai Taizi Technology).

Light propagation in anisotropic disordered medium

We consider the Helmholtz equation that governs light propagation for the electric field 
�Eω(�r):

where k0 is the vacuum wave number and dielectric function ε(�r) = ε
r
+ ε

s(�r) is embed-
ded in an infinite homogeneous reference medium εr . When an incident field �E0

ω is 
considered, the scattering problem can be treated by setting up equivalent relations for 
the incident field that satisfies: −∇ × ∇ × �E0

ω + k20ε
r �E0

ω = 0 in the homogeneous and 
source-free reference system. Introducing the operators L , er , and es for simplifying the 
notation −∇ × ∇× , k20ε

r , and k20ε
s(�r) , respectively, we can rewrite the Eq. 2 as:

The incident light field �E0
ω in the homogeneous and source-free reference system 

satisfies:

The Green’s tensor G(�r, �r′,ω) describes the impulse response of a given physical sys-
tem. This dyadic tensor is closely related to the field susceptibility of the system. The 
Green’s function G associated with the complete system is defined by

where I is the unit tensor. By setting Eq. 3 equal to Eq. 4 and using Eq. 5, we obtain the 
following formula:

(2)−∇ × ∇ × �Eω(�r)+ k20 (ε
r
+ ε

s(�r))�Eω(�r) = 0

(3)(L+ er + es)�Eω(�r) = 0

(4)(L+ er)�E
0
ω = 0

(5)(L+ er + es)G = δ(�r − �r′)I
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We define the generalized propagator as �K (�r, �r′,ω) = 1− Ges . Thus the scattered field 
of Eq. 6 in the �r representation becomes [56]:

Data preparation

The color images collected by the camera will be converted into gray values according 
to the formula I(x, y) = 0.3IR(x, y)+ 0.59IG(x, y)+ 0.11IB(x, y) , where IR , IG , and IB are 
red-, green-, and blue-channel of images, respectively. The converted and subsampled 
(408 × 342 pixels) images are imported into the deep-learning network for training.

Abbreviations
OAM  orbital angular momentum
MTL  multi‑task‑learning
DNN  deep neural network
NLC  disordered nematic liquid crystals
SSIM  structural similarity
CNN  convolutional neural network
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SLM  spatial light modulator
SNR  signal‑to‑noise ratio
MSE  mean squared error
AOTF  acoustic‑optical tunable filter
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