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Abstract 

High performance imaging in parallel cameras is a worldwide challenge in computa‑
tional optics studies. However, the existing solutions are suffering from a fundamental 
contradiction between the field of view (FOV), resolution and bandwidth, in which 
system speed and FOV decrease as system scale increases. Inspired by the compound 
eyes of mantis shrimp and zoom cameras, here we break these bottlenecks by pro‑
posing a deep learning‑based parallel (DLBP) camera, with an 8‑μrad instantaneous 
FOV and 4 × computational zoom at 30 frames per second. Using the DLBP camera, 
the snapshot of 30‑MPs images is captured at 30 fps, leading to orders‑of‑magnitude 
reductions in system complexity and costs. Instead of directly capturing photography 
with large scale, our interactive‑zoom platform operates to enhance resolution using 
deep learning. The proposed end‑to‑end model mainly consists of multiple convolu‑
tion layers, attention layers and deconvolution layer, which preserves more detailed 
information that the image reconstructs in real time compared with the famous super‑
resolution methods, and it can be applied to any similar system without any modifica‑
tion. Benefiting from computational zoom without any additional drive and optical 
component, the DLBP camera provides unprecedented‑competitive advantages in 
improving zoom response time (~ 100 ×) over the comparison systems. Herein, with 
the experimental system described in this work, the DLBP camera provides a novel 
strategy to solve the inherent contradiction among FOV, resolution and bandwidth.

Keywords: Imaging system, Parallel camera, Compound eye, Computational imaging, 
Deep learning, Super resolution, Interactive panorama

Introduction
Vision plays the most important role in information acquisition [1], and camera which 
is the most important mean besides the human eyes is essential for the acquisition of 
visual information. Camera researchers are faced with significant challenges of how to 
effectively achieve high-performance imaging [2–15], including wide-field high-res-
olution imaging [2, 5], high frame-rate imaging [10], and high dynamic range imaging 
[12]. A significant strategy that is used in cameras is to build a bridge between the paral-
lel cameras and the wide-field-of-view (FOV) high-resolution imaging. Unfortunately, 
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natural/artificial compound eyes [16–24] are suffering from a short line of sight and 
small numerical aperture that result in low spatial resolution. A study has also illustrated 
that if the spatial resolution of compound eye increases to the same level as the human’s 
eye, the radius of the whole lens is supposed to be at least 1 m [25]. Fortunately, fac-
ing the real-world scenery reconstruction tasks, array cameras [26–30] pave the way for 
smarter and more advanced imaging. Pan-and-scan panoramic techniques are initially 
used in wide-FOV imaging [31], but the extension of this method may only be feasible 
at extremely low frame rates (e. g. GigaPan Time Machine [32]). As a typical example, 
LSST [33] has a single optical lens, but uses 189 scientific sensors to capture an image 
with 3.2 GPs. As such, benefiting from multiscale design, David’s AWARE-2 [2], AWARE 
10 [34] and AWARE 40 [3] cameras have already driven a transition from small-scale 
to large-scale spatial sampling. As an example, AWARE-2 uses 98 cameras to improve 
the data throughput and spatial resolution at three frames per minute. Moreover, the 
improved RUSH [5] with 35 CMOSs and modular hierarchical array camera [28] with 
20 cameras, are no longer limited by the large overlapping-FOV. Researchers in Stan-
ford University [10] have achieved remarkable results in cost control, including utilizing 
cheap cameras to build the system, and 4 large-PC platforms are also required to operate 
at the same time. More recently, mantis camera [4] with 18 cameras has simplified the 
complexity, but a relatively large and expensive electronic system is still required. In a 
word, the existing systems still follow the principle of digital zoom systems with high 
pixel count and high cost. Computational imaging may transform the central challenge 
of photography from the question of where to point the camera to that of how to achieve 
higher-performance imaging. Thus, if there is exactly a feasible solution to the above 
problems, the optical zoom obviously becomes an inexpensive and convenient answer. 
Understanding the direct transformation from digital zoom with high pixel count to 
optical zoom in parallel cameras has been a long-standing challenge with great scien-
tific and practical importance. Optical zoom that magnifies details without changing the 
back working distance is very desirable for improving the imaging capability. Nowadays 
the existing optical zoom systems [35, 36] usually utilize the mechanical movement of 
multiple solid optical elements to amplify high-resolution details, at a speed of a few 
seconds. Adaptive lenses, such as elastomeric membrane lenses [37, 38], electrowetting 
lenses [39–41], and liquid crystal lenses [42–44], can be used for building optofluidic 
zooming systems [45–48]. However, the disadvantage for the above-mentioned existing 
systems necessitates an extended axial dimension as well as complex driving systems. 
The existing zoom systems can only magnify the central area of FOV and are incapable 
of magnifying the detail in marginal FOV. Herein, one of the key problems is how we 
can make the optical zoom in marginal FOV possible for parallel cameras. How exactly 
we can deal with the problems with a convenient and effective way has become a crucial 
challenge. Such a system, to the best of our knowledge, has never been achieved.

Here we propose a deep learning-based parallel camera with 4 × computational zoom 
that learns optical zoom, with an 8-μrad instantaneous FOV (IFOV) and 33-ms zoom 
speed, which uses 6 cameras to capture snapshot, 30-MPs images at 30 frames per sec-
ond (fps). In this study, we have abandoned the high-pixel mode relying on a number of 
subarrays, and find a new way to replace the above method with an economical deep-
learning model, which has competitive advantages over the existing zoom systems. 
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Considerately, existing challenges are how array cameras can realize the zoom operation 
of any local area in the whole stitched FOV, especially the marginal FOV in each cam-
era. We know yet no array camera can meet this standard, making optical zoom in mar-
ginal FOV possible. Hence, we present an end-to-end model, calculating ideal function 
from short-focus imaging to long-focus imaging over a stitched FOV, which dramatically 
reduces the number and complexity of subarrays. Benefiting from deep learning, the 
innovation is that both the array camera itself and the electronic computing equipment 
can be simplified. Our system has already proved a ~ 100 × improvement in zoom time 
comparing with the conventional systems, independent of any optical components. For 
example, the traditional zoom systems usually take a few seconds to zoom, but ours only 
takes ~ 33 ms.

Results and discussion
Principle and concept

The concept of deep learning-based parallel (DLBP) camera is inspired by mantis shrimp 
compound eyes and zoom camera. The DLBP camera provides an approach to make the 
real-time computational zoom possible over any area of the stitched FOV, especially at 
the edge of FOV that is sacrificed helplessly in the conventional zoom systems.

In nature, insect compound eyes are comprised of neatly arranged ommatidia, which 
is of great significance for a larger stitched FOV, as illustrated in Fig. 1a. Whereas, the 
existing compound eye imaging systems are with a fixed focal length and low numeri-
cal aperture, resulting in low resolution (LR). Hence, the zoom principle of the camera 
improves the resolution (Figs. 1b, c). As far as we know, nevertheless, no array camera 
reported combines the characteristics of the stitched FOV and optical zoom. Figure 1d 
illustrates the functions of the proposed DLBP camera, and the stitched FOV with real 
time is defined as follows:

where N denotes the number of the cameras, FOVs denotes the single FOV of the cam-
era and ti is each frame stitched by time series.

Inspired by the principle of zoom lenses, deep learning enables the DLBP camera to 
calculate the mapping for short-focus to long-focus imaging. As shown in Fig. 1d, the 
DLBP camera cuts the scene into multiple sub FOVs, and each one of them covers a part 
of the scene information. Stitched movie denotes real-time stitched image with wide 
FOV. The pretrained model is operated on an interactive platform, where mechanical 
deflection with driver is replaced over the stitched FOV, which would be unavailable to 
succeed over the conventional zoom systems. Tunable focal length  (F1-F2) is obtainable 
using deep-learning model that learns optical zoom, which is advanced both in zoom 
responsiveness and spatial resolution.

Figure  1e illustrates the overall architecture of the pretrained model in Fig.  1d, 
including feature extraction, shrinking, non-linear mapping, expanding, coordinate 
attention and deconvolution operation, where m = 4 in non-linear mapping layer. 
Here Parametric Rectified Linear Unit (PRELU) is selected as the activation func-
tion and Mean Squared Error (MSE) is as the loss function. Coordinate attention 
(CA) mechanism is applied to strengthen the attention to feature information, which 

(1)FOV {ti} = N × FOVs{ti}
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improves the imaging performance on the basis of ensuring the real-time super-reso-
lution of real-world photography. PRELU is introduced to calculate the output of each 
layer, preventing overfitting. Real world super-resolution imaging puts forward high 
requirements for the practicability of the network. Given a set of wide-FOV images 

Fig. 1 Concept and principle of the DLBP camera. a Compound eye of a mantis shrimp, with stitched 
ommatidia. b Zoom lens. c Schematic of the zoom lens. d Schematic of the real‑time imaging with parallel 
transfer, image stitching, and computational zoom in any area. e Overall architecture of the end‑to‑end 
model. The black arrows indicate the convolutional operations. The red arrows indicate coordinate attention 
operations. The green arrow denotes deconvolution operation, and ☉ denotes the multiplication operation
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{IrealWF} and Ground Truth (GT) images {IrealT}, then we can get the corresponding 
low-resolution images {IrealL}, the optimization objective is calculated as:

where IrealL and IrealT are the i-th LR and GT image pair, and F (IrealL; θ) is the net-
work ψ(·) output for IrealL with parameters θ, IrealS is the super-resolution image. All 
parameters are optimized using optimization function. More details are illustrated in 
Appendix 1.

The model parameters in each layer are described in Supplementary Table S1. The 
parameters of conv and deconv are: k—the filter size, c—the number of channels, s—the 
stride, and p—padding. Similarly, r in the attention layer represents the zoom ratio. Our 
work is performed on a PC platform (Intel Core i5-8600 K CPU @3.6 GHz + GTX1070) 
equipped with Windows10 operating system.

Developed system

The DLBP camera is a highly scalable camera array that is scalable in scale, 
weight, power and cost. As illustrated in Fig.  2a, the DLBP camera is mounted in a 
0.4 m × 0.4 m × 0.15 m frame, including 6 cameras and gimbals. Each camera is fixed 
on a gimbal driven by the voltage, and the angle of the camera is moderately adjustable 
to maximize the degree of freedom. The DLBP camera body is connected to Peripheral 
Component Interconnect Express (PCIE) of host using gigabit network cables, where 
each camera is equipped with a SONY 335 CMOS with a 2-μm pixel. Herein PC and 
PCIE are respectively responsible for computing and transferring data. The DLBP cam-
era shares a local area network (LAN) for communication, and the stitched example is 
displayed with < 300  ms latency. Here we describe the DLBP camera, with an 8-μrad 
IFOV and 4 × computational zoom at 30 fps, which uses 6 cameras to capture snapshot, 
30-MPs images at 30 fps.

Image formation pipeline

The concept that image formation pipeline refers to obtaining a computational-
zoom result from a stitched FOV. Image formation pipeline encompasses three 
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Fig. 2 Developed system. Developed system includes the system body, transfer module and computing 
module
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components including parallel transfer/stitching, smart monitoring and compu-
tational zoom in any area of stitched FOV. Benefiting from the independence of 
cameras, we eliminate the overlapping requirement of stitched FOV comparing 
with the conventional systems (such as ~ 30%, AWARE2), and the computations on 
cameras can be independently operated so that flexibility can be improved. Addi-
tionally, stitching robustness is no longer restricted by texture information, because 
stitched pipeline only depends on the pixel position and the camera position. The 
most important point is that the saved FOV can focus on covering richer informa-
tion, which dramatically reduces the hardware cost and simplifies the system. More 
details are illustrated in Appendix 2.

The DLBP camera produces 30-MP image coded in H.265/H.264 format with 
1–36 Mbps bitstream. As illustrated in Fig.  3, the example is captured using the 
DLBP camera, and the stitched frames (a-c) at 5 s, 8 s and 15 s are visualized, which 
are composed of sub images captured using 6 narrow-field cameras. The extracted 
insets (d-f ) illustrate the details at the seam position. It is worth noting that the 
body of a football player is divided into two parts by the red line, which is exactly 

Fig. 3 Parallel‑transfer and stitched‑FOV frame captured using the DLBP camera. a‑c Stitched frames 
at different instant (5 s, 8 s and 15 s), which are stitched by 6 sub images and prove that the camera has 
overcome the objective challenge of synchronous multiplex transfer. d‑f Labeled regions from stitched 
frames, which denote that each channel follows the principle of synchronization. g‑i Labelled regions from 
stitched frames, from which large‑FOV stitching is realized. The red dotted lines represent the position of 
stitching seams
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the seam. The snapshot insets have demonstrated the transfer speed of each cam-
era, which is completely synchronized because the parallel transfer is achieved. 
Additionally, the experimental results (g-i) have demonstrated that a continu-
ous stitching is realized. Here the red lines in stitched frames denote the stitching 
seams in adjacent mosaic images. Supplementary Movie S1 is an example about the 
parallel transfer.

Panorama with computational zoom and super resolution

As shown in Fig. 4a, the panorama sample is captured at Taikoori Li Square Chengdu, 
covering ~ 0.3–4  km. The stitched frame depicts a panoramic view of downtown 
Chengdu, from which we can observe the local super-resolution details in real time 
through a pre-trained model. As such, the challenge of photography from the ques-
tion of where to point the camera is transformed to that of how to achieve high-
performance computational zoom. The advantage of the DLBP camera that has 
abandoned high-pixel-count and high-cost pattern, has been illustrated in Figs. 4b-j. 
The interaction example gets rid of the constraints of mechanical moving, driving and 
inability to optical zoom at the edge FOV, with a 4 × computational zoom at 30 fps. 
Figures 4b-j depict the super-resolution results of labeled regions at the distance of 
350 m ~ 4000 m, which is not readable without computational zoom and super reso-
lution (Figs. 4e and h).

The panorama is captured using the DLBP camera, with 30 MPs at 30 fps, which 
is stitched by 6 sub-images and covers about 150° FOV. Figure 4b provides the hotel 
information, magnifying details of the hotel’s exterior. Figure  4c demonstrates the 
details of the periphery of a shopping mall, where the number of the fences (23) 
on the roof can be easily distinguished. The experimental result in Fig.  4d shows 
that when the test distance exceeds 4  km, the performance of the model is greatly 
reduced. Figure 4f provides sufficient evidence of the advantages of computational 
zoom, but the mosaics and blurs are inevitable if the image is directly digitally mag-
nified by M times (Fig.  4e). An example HDR image is illustrated in Fig.  4g, the 
brightness of this scene varies from the regions of fully sunlit building to the street 
areas of deep shadow. Comparing with computational zoom, the distorted mosaic 
images can be provided in Fig. 4h (digital zoom). Figure 4i provides accurate infor-
mation, including the number of zebra crossings on the road (27). Supplementary 
Movie S2 is an interactive example in visible light captured from the interface. In 
the provided Supplementary Movie S2, our computational zoom strategy only 
takes ~ 33 ms, however, the traditional zoom systems usually take a few seconds to 
zoom.

We assembled the DLBP camera on the top floor (left) of the building (200 m) to view 
the street in real time. The sky eye satellite map (Fig. 4j) shows that the distance is about 
300 ~ 400 m. The scale is estimated from the satellite map. Figure 4k illustrates our strat-
egy which shows competitive advantages in covered information (FOV × resolution), 
zoom speed and capability. The super-resolution imaging advantage in the infrared light 
for the DLBP camera is also confirmed in Appendix 3. Supplementary Movie S3 is an 
interactive example of infrared light captured from the interface.
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Methods
Image formation strategy

Array cameras with the conventional image stitching algorithms are limited by overlap-
ping FOV (~ 30% in AWARE2), in which complex registration is one of the key chal-
lenges. Furthermore, the stitching methods with feature points do not work well on 

Fig. 4 Interactive panorama example captured using the DLBP camera. a Stitched panorama, which is 
stitched by 6 sub images. b‑d SR reconstruction images with 4 × computational zoom. e Labelled region 
from panorama f‑g SR reconstruction images with 4 × computational zoom, which recovers the rich 
information from short‑focus to long‑focus imaging. h Labelled region from panorama. i SR reconstruction 
image with 4 × computational zoom. j Sky eye satellite map. k Comparison of ours with the conventional 
systems.
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areas where the texture is not obvious, and the time comes at a great cost. To overcome 
the existing challenges, we explore a real-time image formation strategy, which imple-
ments the mapping of input pixels to composite pixels. Parallel computing can be han-
dled by CUDA interface [49].

Crowd identification and tracking algorithm

A large number of examples are captured to verify our camera, where an example is 
captured and described in Supplementary Movie S4. For the crowded scene SCU East 
Stadium, a feature recognition algorithm [50] is introduced to locate the human. Peo-
ple on the move are tracked in real time using KCF algorithm [51]. While some peo-
ple have their backs to the camera, the algorithm works well because athletes playing 
basketball are at a suitable mobile frequency and scale. We will continue to enrich 
our application scenarios and further improve the accuracy rate in future work. More 
details about group monitoring are presented in Appendix 4.

Dataset production

Real-world datasets are captured to train our end-to-end model with a 4 × computa-
tional zoom. The production of high-quality datasets is a key factor affecting super-
resolution reconstruction. Long and short focus images are slightly misaligned when 
the zoom system is in the zoom process, the rough alignment and cropping can cause 
artifacts. Given a pair of short-focus and long-focus image, we regard the long-focus 
image as positive sample and short-focus image as negative sample. The corresponding 
information of positive samples can be obtained from negative samples using image 
registration technology. Here we define long-focus image as Ground Truth (GT), the 
GT image and the LR image are performed as a pair of data. More details about dataset 
production are presented in Appendix 1. The comparison results with the traditional 
systems and methods are illustrated in Appendix 5 and Supplementary Table S2.

Conclusion
The DLBP camera is inspired by mantis shrimp compound eyes and zoom camera, with 
high scalability, flexibility and robustness. Compared to the conventional zoom sys-
tems or array cameras, the DLBP camera has competitive advantages, (1) it learns opti-
cal zoom using a deep-learning method that is not dependent on any components, to 
recover the ideal imaging in required focal-length. (2) it replaces optical deflection (with 
an invariant optical-axis) in marginal FOV in array camera, breaking the zoom rule of 
array camera imaging. (3) it covers more information including FOV and spatial resolu-
tion, which avoids the requirement of overlapping FOV and is not sensitive to texture 
areas, with high scalability. (4) it has improved ~ 100 × in zoom responsibility, which is 
of great significance to activities requiring fast zoom.

The developed DLBP camera breaks the optical-zoom rule, with an 8-μrad IFOV and 
4 × computational zoom at 30 fps, which uses 6 cameras to capture snapshot, 30-MPs 
images at 30 fps. In this paper, with the experimental system described in this work, the 
DLBP camera provides a new strategy to solve the inherent contradiction among FOV, res-
olution and bandwidth.
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Appendix 1
SR reconstruction with 4 × computational zoom

SR interaction example with 4 × computational zoom

The SR reconstruction mainly consists of two components, including dataset production, 
computational zoom in any area which learns the optical zoom, without additional optical 
or drive assistance. Here we describe the stitched example (Fig. 
5a), captured using 2 cameras in the DLBP camera (high altitude control and FOV oc-
clusion), taken at downtown Chengdu. As illustrated in Fig. 5a, a street scenario that far 
exceeds the resolution limits of the conventional systems is illustrated. We assembled the 
DLBP camera on the top floor of the building (200 m) to capture the street in real time. 
The sky eye satellite map shows that the distance is about 300 m (Fig. 5b). The scale is 
estimated from the satellite map. As comparison examples, Fig. 5c denotes the interpola-
tion image of labeled regions in Fig. 5a, and Fig. 5d illustrates that the words in the traffic 
sign are clearly visible because SR reconstruction with 4 × computational zoom is real-
ized, it is, however, incapable of being readable from Fig. 5c. The comparison in Fig. 5c 
and Fig. 5d provides sufficient evidence, for instance, simple digital amplification leads 
to local blurs and overall mosaics. However, the instantaneous ideal image of low-quality 
photography has been restored without additional hardware (Fig. 5d).

Fig. 5 SR interaction example with 4 × computational zoom. a Wide‑FOV example captured using 2 cameras 
of the DLBP camera. b Sky eye satellite map. Scale: 50 m. c Labeled region in Fig. 5a. d, e SR reconstruction 
examples with 4 × computational zoom in Fig. 5a. f, g enlarged images in Fig. 5e. h SR reconstruction 
examples with 4 × computational zoom in Fig. 5a
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It is worth noting that the examples (Figs. 5d-h) aren’t executed by the conventional digi-
tal zoom. Our strategy avoids the use of additional assistance in the conventional systems, 
such as moving the spacing of optical lenses, changing radius of curvature, and regulating 
refractive index to achieve zoom, which greatly simplifies the system without any additional 
hardware. To our knowledge, the conventional systems can only zoom around the central 
FOV, while the edge of FOV is sacrificed. Herein, the central challenge is whether we can 
achieve zoom in the whole stitched-FOV. The insets Figs. 5d-h are cropped from the video 
frames, Fig. 5e provides accurate information, such as exactly how many squares (12) are in 
the red rectangle and exactly what Arabic numerals (599) are on the license plates (Figs. 5f-
g). As illustrated in Fig. 5h, the inset gives detailed information about the signage. The most 
important point is our strategy provides competitive advantages in zoom speed over the 
conventional zoom systems, which is critical for areas that are in dire need of rapid response 
capabilities. Supplementary Movie S5 is an interactive example using an end-to-end model.

Dataset production method

The production of high-quality datasets is a key factor affecting SR reconstruction. Long-
focus and short-focus images will be slightly misaligned when the proposed system is in 
the zoom process, and rough alignment and cropping can cause artifacts. The experi-
mental result shows that ORB  [52] is suitable for processing our paired datasets than 
other feature extraction and matching operators such as scale invariant feature trans-
form (SIFT)  [53] and speeded up robust features (SURF) [54]. The advantage for ORB is 
clear, such as scale and rotation consistency, invariance light insensitivity. Therefore, it is 
usually utilized for feature matching to find optical flow between moving frames, image 
mosaic and other tasks. Paired dataset production is described below:

Fig. 6 Schematic of the zoom‑based dataset production
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(1) The short-focus image contains more field-of-view information than the long-
focus image, then our task is to acquire the same information in the short-focus 
image as the GT image. As illustrated in Fig. 6, short-focus image (IrealWF) and GT 
image (IrealT) can be captured in BMP format, as pairs. Given a short-focus image (Ire-
al
WF) and long-focus image (IrealT), we first extract the feature points of the images to 

be matched, represented by the blue circles. Then the brute force matching method is 
utilized to obtain a preregistration feature point pair, represented by the red lines.
(2) Random Sample Consensus (RANSAC algorithm) [55] is an iterative algorithm. 
In each iteration, the curve is fitted by randomly selecting sample points, finding the 
sample points whose distance from the fitted curve is within the tolerance range and 
counting the number, and then entering the next iteration until the limit of cycle 
times is reached. In this work, RANSAC is used to calculate the homography matrix 
to convert the homography transformation from GT image to low-resolution (LR) 
image (Ireal

L). The calculation method can be described as:

where (x’, y’) and (x, y) are the key coordinates of the target image and the source 
image, respectively. R is the rotation matrix and T is the translation matrix.
(3) We calculate the relationship to find the LR image corresponding to the GT image 
and save it. For non-standard image pairs, a uniform aspect ratio (4) is also required. 
Final obtainable pairs (LR, GT) are sent to the network for training (100 pairs) until 
the trained model achieves reliable results.

(3)





x′

y′

1



 =

�

R T

0T 1

�





x
y
1





Fig. 7 Schematic of the thread organization of parallel pixel mapping. The black pixels represent the final 
composite space, here the composite space is divided into multiple blocks comprising of CUDA threads, and 
each input pixel is executed by a CUDA thread which transforms the coordinate system of that pixel
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Appendix 2
Image formation strategy

The image formation process is on the basis of compositing a panorama from a set of 
narrow-field images. In our strategy, the overlapping requirement of stitched FOV 
is removed comparing with the conventional systems. The advantage for the DLBP 
camera, is that the calibration operation can be achieved once the position and opti-
cal parameters of each camera are predicted. Benefiting from independent cameras, the 
stitching robustness is no longer restricted by texture information. The most important 
point is that the saved FOV can focus on covering richer information, which dramati-
cally reduces the hardware cost and simplifies the system.

Image formation strategy, as a scalable and parallelizable solution that exploits the 
multiscale features provided by the DLBP camera, which is amenable for GPU architec-
ture. Parallel computing can be handled by CUDA interface [56]. GPU thread T is the 
basic processing unit, as contained in a Block structure. As depicted in Fig. 
7, each input pixel is executed by a CUDA thread which transforms the coordinate system 
of that pixel and is mapped to the composite space. The whole FOV is stitched by mul-
tiple sub-FOVs, which is conducive to parallelization. The pixel-thread relationship that 
participates in the calculation is defined as:

(4)
W ×H = T ×M × N

Fig. 8 Image formation example with seamless stitching. a-f Sub images captured using DLBP camera. 
g Stitched‑seamless panorama composited using 6 sub‑images (a‑f )
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where W and H denote the number of the horizontal and the vertical pixels of the image, 
respectively, and M and N denote the number of the created horizontal Blocks and verti-
cal Blocks, respectively. Once the calibration of the camera is implemented, we will build 
a set of matrices {H#} for successive stitching, which transforms the local pixels to the 
composite pixels. The final composite image is computed as follows:

here 





x
y
1





# denotes the coordinate of the input pixel, # is the serial number in each cam-

era. An interactive example can be executed over the stitched-FOV using the SR model 
with computational zoom.

The requirements of different application scenarios/distance may lead to a fundamen-
tal compromise between accuracy and efficiency. In fact, the seam line/exposure and the 

(5)





u
v
1



# = H#





x
y
1



, # = 1, 2 . . . 6

Fig. 9 Interactive panorama example in the infrared band, covering 0.3–4 km. a Infrared panorama captured 
using the DLBP camera, which is stitched by 6 sub‑images. b-e Infrared‑SR reconstruction images with 
4 × computational zoom, which is one‑to‑one corresponding to the label area in Fig. 9a
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imaging speed are relative consideration for the final composite panorama because the 
DLBP operates on an ordinary computer. However, the stitching matrix is different and 
could be fine-tuned according to the requirements of the application scenario/distance 
because the mapping matrix is not easy to establish, faced with a compromise between 
accuracy and speed. Our pipeline should not only take into account the real-time effi-
ciency of the project, but also eliminate it as much as possible, which is a choice to weigh 
the pros and cons. For a stitched example in Fig. 
8, each sub image (a-f) is captured using our proposed DLBP, which has different expo-
sure and seams because of the complex real-world environment. The pipeline may place 
more emphasis on exposure and stitching phenomena, and a more complex matrix will 
be created at this time. As illustrated in Fig. 8(g), the dark cloud of that varies from the 
right to the left in the sky and returns to the roof of the building. The stitched-seamless 
panorama effectively eliminates the seam lines and exposure differences. In addition, 

Fig. 10 Crowd tracking on live broadcast of sports events. a-f Video frames at different instant, where 
basketball players in motion are tracked and represented by yellow rectangular boxes, which helps us to 
further observe social group activities

Fig. 11 Comparison of our system with the conventional system. a Imaging schematic of the conventional 
zoom strategy. b Imaging schematic of our strategy
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the straight rope is clearly recorded in the FOV of DLBP, here the seamless stitching is 
favorable to the visual senses.

Appendix 3
Interactive panorama example in the infrared band

We also explore the impact of our strategy on infrared-panoramic SR imaging, as illus-
trated in Fig. 
9. The infrared panorama (Fig. 9a) depicts the whole downtown Chengdu at 10 p.m, 
captured using the DLBP camera with 30 MPs. Supplementary Movie S3 is an interactive 
panorama example with SR and 4 × computational zoom in the infrared band, operates 
at 30 fps. The images (Figs. 9b-e) are cropped from the video frames. As illustrated in 
Fig. 9b, it provides specific details, such as exactly how many cars (5) are waiting for traf-

Fig. 12 Comparison results with the conventional SR methods [57–59]
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fic lights near the zebra crossing, and exactly how many zebra crossings (21) are located 
on the road over the stitched FOV. Here the lights of the vehicle group come together to 
cause local overexposure. Figure 9c shows that our strategy continues to perform well in 
response to long-range and ultra-depth-of-field (DOF) demands, for instance, the layering 
between each tall building in the distance (4 km) is palpable. The brightness of this scene 
in Fig. 9d varies from the regions of bright street to the areas of deep shadow, which pro-
vides the information of high-dynamic-range street. Figure 9e also provides details, such 
as exactly how many floors (9) are located in the cropped FOV from infrared panorama.

Appendix 4
Crowd identification and tracking module

Observation of group activity has become one of the research hotspots of wide-FOV 
cameras with high-resolution. The video sequences in Fig. 
10 are captured at different instant using 2 cameras in the DLBP camera because of high 
altitude control and FOV occlusion. As an example with real time, taken at SCU East 
Stadium, it reveals the live broadcast of the event of the players who are participating in a 
basketball match. Here basketball players who are moving are recognized and tracked in 
real time until they disappear in the field of vision, herein, we envisage that our strategy 
of enlightening effect on intelligent transportation and group monitoring. A large number 
of examples are captured to verify our parallel camera. For the crowded scene at SCU 
East Stadium, a feature recognition algorithm is introduced to detect the human. People 
on the move are tracked in real time using kernelized correlation filter (KCF), while some 
people have their backs to the camera, the algorithm works well because basketball play-
ers are at a suitable scale. We will continue to enrich our application scenarios and further 
improve the accuracy rate in future work. The DLBP camera has great potential for live 
broadcast of large-scene sports events.

Appendix 5
Comparisons of ours with the conventional systems and methods

Our strategy has competitive advantages on improving system complexity, volume and 
performance. As illustrated in Fig. 
11, our strategy has already improved ~ 100 × improvements in zoom speed relative to the 
conventional systems, such as ours (30 fps) and traditions (3 s +). We believe that this 
technology can greatly improve the system resolution without any additional hardware 

Fig. 13 Visualization of feature maps in computational model
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on the premise of simplifying the system. We also compare the performance metrics of 
DLBP camera with the world’s most famous parallel cameras (Table S3).

As illustrated in Fig. 
12, we also compared the reconstruction of our end-to-end model with the world-famous 
super-resolution models, from which it can be seen that our reconstruction effect is ahead 
of other models. From two sets of examples, here our advantage is to resist mosaic phe-
nomenon, and the ability to describe texture details is more prominent due to the addition 
of attention mechanism. As illustrated in Fig. 
13, the processing details of the computational model are visualized so that the results 
can be better evaluated.
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Mbps  Million bits per second
ms  Millisecond
LR  Low resolution
HR  High resolution
SR  Super resolution
MSE  Mean Squared Error
CA  Coordinate attention
PCIE  Peripheral Component Interconnect Express
LAN  Local area network
GT  Ground Truth

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s43074‑ 023‑ 00095‑3.

Additional file 1: Table S1. Calculated details in end‑to‑end model. TableS2. Results of PSNR, SSIM and time on the 
City‑100 [60], and real‑word dataset.Table S3. Characteristics comparison of DLBP with the most famous parallel‑
cameras, where red represents the lead

Additional file 2: Movie S1. Demonstration ofparallel multiplex transfer and stitching. Movie S2. Demonstration of 
theinteractive panorama with computational zoom and SR. Movie S3. Demonstration ofthe panorama with com‑
putational zoom and SR in the infrared light. Movie S4. Demonstrationof crowd tracking on live broadcast of sports 
events. Movie S5. Demonstrationof interactive SR example with 4 × computational zoom.

Acknowledgements
We would like to thank Ms. Yuxian Zhang for helping polish the article.

Authors’ contributions
S. B. L., L. L. and Q. H. W. conceived the project. M. X. Z. proposed the principle; S. B. L. and J. C. X. designed the system, 
performed the simulations and conducted the experiments; S. B, L., R. Y. Y. and B. K. X. designed the algorithms and 
analyzed the data; all authors contributed to discussions and manuscript writing.

Funding
This work was sponsored by National Natural Science Foundation of China under Grant No. 61927809, 61975139 and 
62020106010.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information 
files. And the code is available at https:// github. com/ lsb17 84461 9800/ Compu tatio nal‑ SR.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

https://doi.org/10.1186/s43074-023-00095-3
https://github.com/lsb17844619800/Computational-SR


Page 19 of 20Liu et al. PhotoniX            (2023) 4:17  

Competing interests
The authors declare that they have no competing interests.

Received: 7 March 2023   Revised: 24 April 2023   Accepted: 30 May 2023

References
 1. Ditchburn RW. Information and control in the visual system. Nature. 1963;198:630.
 2. Brady DJ, et al. Multiscale gigapixel photography. Nature. 2012;486:386–9.
 3. Brady DJ, et al. Characterization of the AWARE 40 wide‑field‑of‑view visible imager. Optica. 2015;2(12):1086.
 4. Brady DJ, et al. Parallel cameras Optica. 2018;5(2):127–37.
 5. Fan JT, et al. Video‑rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat Photon‑

ics. 2019;13:809–16.
 6. Strogatz SH. Exploring complex networks. Nature. 2001;410:268–76.
 7. Kittle DS, et al. A testbed for wide‑field, high‑resolution, gigapixel‑class cameras. Rev Sci Instrum. 2013;84: 053107.
 8. Park HJ, et al. Structural and functional brain networks: from connections to cognition. Science. 2013;342:1238411.
 9. Bullmore E, et al. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev 

Neurosci. 2009;10:186–98.
 10. Wilburn B, et al. High performance imaging using large camera arrays. ACM Trans Graph. 2005;24:765–76.
 11. Lynn CW, et al. The physics of brain network structure, function and control. Nat Rev Phys. 2019;1:318–32.
 12. Seshadrinathan K, et al. High dynamic range imaging using camera arrays. 2017 IEEE International Conference on 

Image Processing (ICIP). IEEE; 2017. p. 725‑9.
 13. Zhang Y, et al. Multi‑focus light‑field microscopy for high‑speed large‑volume imaging. PhotoniX. 2022;3:1–20.
 14. Wu JC, et al. An integrated imaging sensor for aberration‑corrected 3D photography. Nature. 2022;612:62–71.
 15. Cossairt, et al. Scaling law for computational imaging using spherical optics. JOSA A. 2011;28:2540–53.
 16. Jeong KH, et al. Biologically inspired artificial compound eyes. Science. 2006;312(5773):557–61.
 17. Zhu L, et al. Miniaturising artificial compound eyes based on advanced micronanofabrication techniques. Light: 

Adv Manuf. 2021;2(1):84–100.
 18. Cao XW, et al. Single‑pulse writing of a concave microlens array. Opt Lett. 2018;43:831–4.
 19. Tanida J, et al. Color imaging with an integrated compound imaging system. Opt Express. 2003;11:2109–17.
 20. Wu D, et al. High numerical aperture microlens arrays of close packing. Appl Phys Lett. 2010;97(3):031109.
 21. Chan EP, et al. Fabricating microlens arrays by surface wrinkling. Adv Mater. 2006;18:3238–42.
 22. Song YM, et al. Digital cameras with designs inspired by the arthropod eye. Nature. 2013;497:95–9.
 23. Cheng Y, et al. Review of state‑of‑the‑art artificial compound eye imaging systems. Bioinspir Biomim. 2019;14(3): 

031002.
 24. Park SH, et al. Subregional slicing method to increase three‑dimensional nano‑fabrication efficiency in two‑photon 

polymerization. Appl Phys Lett. 2005;87:154108.
 25. Kirschfeld K. The resolution of lens and compound eyes. Neural principles in vision. 1976. p. 354–70.
 26. Cossairt OS, et al. Gigapixel computational imaging. 2011 IEEE International Conference on Computational Photog‑

raphy (ICCP). 2011. p. 1–8.
 27. Liu SB, et al. Real‑time and ultrahigh accuracy image synthesis algorithm for full field of view imaging system. Sci 

Rep. 2020;10(1):12389.
 28. Perazzi F, et al. Panoramic video from unstructured camera arrays. Computer Graph Forum. 2015;34:57–68.
 29. Dai QH, et al. A modular hierarchical array camera. Light Sci Appl. 2021;10(1):1–9.
 30. Afshari H, et al. A spherical multi‑camera system with real‑time omnidirectional video acquisition capability. IEEE T 

Consum Electr. 2012;58:1110–8.
 31. Cohen MF, et al. Capturing and viewing gigapixel images. ACM Trans. Graph. 2007;26(3): 93–es.
 32. Gigapan time machine. (2016). [Online]. Available: http:// timem achine. cmucr eatel ab. org.
 33. Ivezić Ž, et al. LSST: from science drivers to reference design and anticipated data products. American Astronomical 

Society Meeting. 2009;213:460–03.
 34. Marks DL, et al. Characterization of the AWARE 10 two‑gigapixel wide‑field‑of‑view visible imager. Appl Opt. 

2014;53(13):C54–63.
 35. Hou C, et al. Ultra slim optical zoom system using Alvarez freeform lenses. IEEE Photonics J. 2019;11(6):1–10.
 36. Zou Y, et al. Ultra‑compact optical zoom endoscope using solid tunable lenses. Opt Express. 2017;25(17):20675–88.
 37. Savidis N, et al. Nonmechanical zoom system through pressure‑controlled tunable fluidic lenses. Appl Opt. 

2013;52(12):2858–65.
 38. Zhang DY, et al. Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view. Opt Commun. 

2005;249(1–3):175–82.
 39. Cira NJ, et al. Vapour‑mediated sensing and motility in two‑component droplets. Nature. 2015;519(7544):446–50.
 40. Nie J, et al. Self‑powered microfluidic transport system based on triboelectric nanogenerator and electrowetting 

technique. ACS Nano. 2018;12:1491–9.
 41. Lee J, et al. Multifunctional liquid lens for variable focus and aperture. Sensor Actuat A‑Phys. 2019;287:177–84.
 42. Li YL, et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large 

size. Light Sci Appl. 2022;11(1):1–10.
 43. Jamali A, et al. Large area liquid crystal lenses for correction of presbyopia. Opt Express. 2020;28(23):33982–93.
 44. Chu F, et al. Four‑mode 2D/3D switchable display with a 1D/2D convertible liquid crystal lens array. Opt Express. 

2021;29(23):37464–75.
 45. Kuiper S, et al. Variable‑focus liquid lens for miniature cameras. Appl Phys Lett. 2004;85(7):1128–30.

http://timemachine.cmucreatelab.org


Page 20 of 20Liu et al. PhotoniX            (2023) 4:17 

 46. Son HM, et al. Tunable‑focus liquid lens system controlled by antagonistic winding‑type SMA actuator. Opt Express. 
2009;17(16):14339–50.

 47. Lin YH, et al. An electrically tunable optical zoom system using two composite liquid crystal lenses with a large 
zoom ratio. Opt Express. 2011;19(5):4714–21.

 48. Lin HC, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom. 
Opt Express. 2012;20(25):27222–9.

 49. Cheng J, et al. CUDA by example: an introduction to general‑purpose GPU programming. Scalable Computing: 
Practice and Experience, 2010;11(4):401.

 50. Xing W, et al. Fast pedestrian detection based on haar pre‑detection[J]. International Journal of Computer and 
Communication Engineering. 2012;1(3):207.

 51. Henriques JF, et al. High‑speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell. 
2015;37:583–96.

 52. Rublee E, et al. ORB: an efficient alternative to SIFT or SURF. 2011 IEEE International Conference on Computer Vision. 
2011. p. 2564–71.

 53. Lowe DG. Distinctive image features from scale‑invariant keypoints. Int J Comput Vision. 2004;60:91–110.
 54. Song ZL, Zhang JP. Remote Sensing Image Registration Based on Retrofitted SURF Algorithm and Trajectories Gen‑

erated From Lissajous Figures. IEEE GEOSCI REMOTE S. 2010;7:491–5.
 55. Fischler MA, et al. Random sample consensus: a paradigm for model fitting with applications to image analysis and 

automated cartography. Commun ACM. 1981;24:381–95.
 56. Sanders J, et al. CUDA by example: an introduction to general‑purpose GPU programming. Addison‑Wesley Profes‑

sional. 2010.
 57. Lai WS, et al. Deep Laplacian pyramid networks for fast and accurate super‑resolution. CVPR. 2017. p. 624–32.
 58. Park SH, et al. Flexible style image super‑resolution using conditional objective. IEEE Access. 2022;10:9774–92.
 59. Lim B, et al. Enhanced deep residual networks for single image super‑resolution. IEEE Conf. Comput. Vis. Pattern 

Recognit. 2017. p. 136–44.
 60. Chen C, et al. Camera lens super‑resolution. IEEE Conf. Comput. Vis. Pattern Recognit. 2019. p. 1652–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Deep learning enables parallel camera with enhanced- resolution and computational zoom imaging
	Abstract 
	Introduction
	Results and discussion
	Principle and concept
	Developed system
	Image formation pipeline
	Panorama with computational zoom and super resolution

	Methods
	Image formation strategy
	Crowd identification and tracking algorithm
	Dataset production

	Conclusion
	Appendix 1
	SR reconstruction with 4 × computational zoom
	SR interaction example with 4 × computational zoom

	Dataset production method

	Appendix 2
	Image formation strategy

	Appendix 3
	Interactive panorama example in the infrared band

	Appendix 4
	Crowd identification and tracking module

	Appendix 5
	Comparisons of ours with the conventional systems and methods

	Anchor 26
	Acknowledgements
	References


