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liudongopt@zju.edu.cn Aerosols and clouds greatly affect the Earth's radiation budget and global climate.

' State Key Laboratory of Modern Light detection and ranging (lidar) has been recognized as a promising active remote
Sgtl'ecg"’"e'g:g;?fa”ltsa;:g'ce sensing technique for the vertical observations of aerosols and clouds. China launched
and Engineering, Zhejiang its first space-borne aerosol-cloud high-spectral-resolution lidar (ACHSRL) on April 16,
University, Hangzhou 310027, 2022, which is capable for high accuracy profiling of aerosols and clouds around the
gggighai Institute of Optics globe. This study presents a retrieval algorithm for aerosol and cloud optical properties
and Fine Mechanics, Chinese from ACHSRL which were compared with the end-to-end Monte-Carlo simulations
Academy of Science, and validated with the data from an airborne flight with the ACHSRL prototype (A2P)
Esmgﬂjgrfg?{ncler:jaﬂon . instrument. Using imaging denoising, threshold discrimination, and iterative recon-
available at the end of the article struction methods, this algorithm was developed for calibration, feature detection,

and extinction coefficient (EC) retrievals. The simulation results show that 95.4% of the
backscatter coefficient (BSC) have an error less than 12% while 95.4% of EC have an
error less than 24%. Cirrus and marine and urban aerosols were identified based on the
airborne measurements over different surface types. Then, comparisons were made
with U.S. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) profiles, Moderate-
resolution Imaging Spectroradiometer (MODIS), and the ground-based sun photom-
eters. High correlations (R >0.79) were found between BSC (EC) profiles of A2P and
CALIOP over forest and town cover, while the correlation coefficients are 0.57 for BSC
and 0.58 for EC over ocean cover; the aerosol optical depth retrievals have correlation
coefficient of 0.71 with MODIS data and show spatial variations consistent with those
from the sun photometers. The algorithm developed for ACHSRL in this study can be
directly employed for future space-borne high-spectral-resolution lidar (HSRL) and its
data products will also supplement CALIOP data coverage for global observations of
aerosol and cloud properties.
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Introduction

Aerosols greatly affect the Earth’s radiation budget in both direct and indirectly way
through the aerosol-cloud interaction (ACI) [1-3]. By analyzing the backscatter laser
spectrum or energy variation generated by the interaction between the laser beam
and atmospheric particles [4—6], lidar has been recognized as a promising remote
sensing technique for aerosol and cloud vertical profiling at high spatial and temporal
resolution [7-10]. The ground-based lidar is limited by its spatial coverage, mean-
while the space-borne lidar has great potential to provide global data coverage [9, 11].
China launched the Atmospheric Environment Monitoring Satellite (AEMS) loaded
with its first space-borne atmospheric lidar, Aerosol and Carbon Detection Lidar
(ACDL) on April 16, 2022 [12, 13] (see Figures S1 and S2). ACDL carries two lidar
instruments on a single platform in a 705-km solar synchronous orbit. One is the aer-
osol-cloud high-spectral-resolution lidar (ACHSRL), and the other is the integrated
path differential absorption (IPDA) lidar for atmospheric column CO, observations
[14-16].

The U.S. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, has
provided global observations of aerosols and clouds since 2006 [17]. CALIOP has a rela-
tively large uncertainty in extinction coefficient (EC) retrievals of aerosols and clouds as
CALIOP was designed as a Mie backscatter lidar system and the lidar ratio (LR) is nor-
mally selected or modeled [18]. Taking advantage of the broad spectrum of the Rayleigh
scattering from atmospheric molecules, China’s high-spectral-resolution lidar (HSRL)
can retrieve the aerosol optical properties and LR directly with a narrow spectral filter to
separate the Mie and Rayleigh scattering components from the lidar backscatter signals.
The European Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite uti-
lizes a 355 nm Fabry—Pérot interferometer (FPI) HSRL payload, named the ATmospheric
LIDar (ATLID) [19], which is scheduled to be launched in 2023. The CALIPSO team has
established a data processing system for vertical profiles of aerosols and clouds, includ-
ing selective iterative boundary locator (SIBYL) for feature detection, scene classification
algorithm (SCA), and hybrid extinction retrieval algorithm (HERA) [17]. Meanwhile,
the EarthCARE team has developed ATLID level-2 retrieval algorithm (L2a algorithm)
using data from EarthCARE simulator. The L2a algorithm mainly covers target detec-
tion, aerosol and cloud optical property retrieval and target classification [20, 21].

The ACDL scientific team has studied a variety of aspects about the retrieval algo-
rithm for ACHSRL, starting from ground-based lidar, the error analysis of atmospheric
parameters, the optimization design of iodine absorption cell, the calibration of overlap
function, and the feature detection to the extinction coefficient retrieval [22—26]. Sub-
sequently, Dong et al. analyzed the optimum iodine absorption line of ACHSRL [27].
Based on Dong’s choice, Liu et al. and Yu et al. have estimated the performance of ACH-
SRL and showed ACHSRL would be able to provide high quality vertical profiles of aero-
sols and clouds [13, 28]. Zheng et al. applied the block matching 3D filtering (BM3D)
denoising method to ACHSRL attenuated backscatter coefficient (ATB), and the method
could meet the noise reduction need [29]. Meanwhile, Mao et al. upgraded the space-
borne lidar feature detection using a simple multiscale and minimum cost function
method [30, 31].
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The airborne ACHSRL prototype (A2P) was developed and an airborne campaign
with the A2P was conducted over Qinhuangdao, China, in March 2019, for the evalu-
ation of instrument performance and the validation of retrieval algorithms [32-34]. Up
to date, the ACDL scientific team is working on the data processing yet for this airborne
campaign.

Currently, ACDL is adapting the space environment and will switch on the laser soon.
The main purpose of this study is to validate and optimize the corresponding retrieval
algorithm of ACHSRL before the satellite observation starts. The Mie signal in the
molecular channel of ACHSRL has been eliminated by the iodine absorption cell, result-
ing in a lower signal intensity compared with the Mie scattering space-borne lidar, which
requires special processing in the retrieval algorithm. Hence, the methods of imaging
denoising, threshold discrimination and iterative reconstruction are applied in this study
to obtain optimal signal-to-noise ratio (SNR), accurate layer distributions and optical
properties.

In this study, first, we describe the measurement principle of ACHSRL and its retrieval
algorithm. We then present the forward model Monte-Carlo (MC) simulations for a
variety of scenes, the airborne campaign in Qinhuangdao, China, and some results from
simulations and airborne measurements. The A2P aerosol and cloud optical properties
were compared with CALIOP profiles, Moderate-resolution Imaging Spectroradiometer
(MODIS) and sun photometers optical depth products. The comparison results showed
good agreement between them and robustness of the retrieval algorithm.

Methods
Measurement principle of ACHSRL
Figure 1 is the functional diagram of ACHSRL. The backscatter lights from aerosols and
clouds are collected by the telescope and detected by photomultiplier tube (PMT) or
avalanche photodiode detector (APD) [35, 36]. A parallel channel and perpendicular
channel are designed to detect the linear depolarization of backscatter light while the
molecular channel is specialized for the estimate of aerosol and cloud loads.

The three channels are denoted with subscripts || (parallel), L (perpendicular) and M
(molecular). The Mie scattering spectrum is filtered by the narrow-band discriminator
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Fig. 1 Functional block diagram of ACHSRL at 532 nm.'F'=FP etalon filter, = Lens, 'R'= Reflector,
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iodine absorption cell from the Rayleigh scattering spectrum. Without the strict assump-
tion of the LR, the signals from three channels are sufficient to retrieve the optical prop-
erties of aerosols and clouds [13, 37].

The backscatter signal of three channels is expressed as, according to the functional
block diagram [13, 37]:

CM
PM(z) = m[fm(Z)ﬂ,”,,(Z) + /(@) By (1T (2) (1)
Plz) = C—"[ﬂ I (@) + Bl @)1T?(2) )
(z—2z9)2" "™ p
P(z) = C7L[ﬂi<z> + BL(2)1T?(2) (3)
(z—z0)2" " r
T%(z) = exp {—2 /ra(z/)dz/] = exp [—2 /r ap(z) + am(z)dZ (4)
0 0
B2 = [P@)e -7 /|C] 5)

where P is the measured power. C is the channel efficiency constant. The subscripts m
and p represent the molecule and particle (aerosols and clouds), respectively. f,,,,(z) is

the molecule /particulate backscatter coefficient (BSC), and «,, , (z) is the molecule/par-

m/)
ticulate EC at altitude z. T%(z) is the two-way transmittance frorrf the satellite to the scat-
tering volume at altitude z. B'(z) is the calibrated ATB for three channels (i=||, L, M).
S 1s the discriminator transmission of Rayleigh scattering, and f, is the discriminator
transmission of Mie scattering. z-z, is the range from the satellite to the scattering vol-
ume, z, is satellite altitude. The optical properties of aerosols and clouds, such as BSC,
EC, LR, depolarization ratio (DR) and optical depth, could be calculated from Egs. 1, 2,
3,4 and 5). The derivation is provided in Supplementary Information S1.

Large uncertainty of EC retrieved from this standard method would appear without
distinguishing clear air from aerosols or clouds (i.e., feature). Furthermore, negative val-
ues of EC could be retrieved due to the low SNR [38]. Therefore, denoising and feature
detection methods are utilized and will be illustrated in Retrieval algorithm.

Retrieval algorithm

Figure 2 is the ACHSRL data processing flowchart including the data preparation, pre-
processing, and optical properties retrieval. The validation part is illustrated in Results
and Discussion.

Data preparation

Data preparation includes the original data, calibration constant and meteorological
data, such as temperature, pressure, humidity profiles, GPS, f,,, f,, B,» @, 6, etc. The
meteorological data used for ACHSRL retrievals would come from European Centre for
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Fig. 2 The data processing schematic of retrieval algorithm for ACHSRL (A2P)

Medium-Range Weather Forecasts (ECMWF). During the airborne campaign, most of
the meteorological data were obtained from the in-situ instruments on board the air-
craft and the nearby radiosondes. Invalid data recorded when the aircraft’s attitude is
unstable, i.e. at the takeoff, turning, and landing would be screened out from further
analysis. After attitude correction and data screening, the uncalibrated original signal
was ready for the pre-processing.

Pre-processing

Pre-processing is aimed at obtaining calibrated ATB. Background noise were first
removed by subtracting the mean of the high-altitude clear air signals. Then, the hori-
zontal and vertical averaging were made to guarantee sufficient SNR. According to Eq. 5,
the systematic efficiency constant C’' and range factor (z-z,)* of backscattering signal
P!(z) would be calibrated and turned into ATB B/(z), which only reflected the backscat-
ter and extinction component. The gain ratio correction of different channels of PMT
adopts the Rayleigh signal fitting method to obtain the gain-corrected ATB [39]. In addi-
tion, the satellite travels at a speed of 7.5 km/s, resulting in a large difference between
adjacent shot signals. Meanwhile, too much average on the original profiles may degrade
the true values of the optical parameters. Therefore, BM3D was applied to ATB to pre-
serve layer features since Zheng et al. demonstrated its feasibility in ACHSRL denoising
[29]. The output data of pre-processing is the averaged, denoised, and range factor and
gain ratio corrected ATB.

Feature detection

Optical properties retrieval in Fig. 2 covers feature detection and EC retrieval. Since the
backscatter coefficient ratio (BSR) R(7) is often used to represent the relative strength of
aerosols and clouds, BSR was chosen as the threshold determination parameter in the
feature detection, benefitting from the direct measurements of backscatter coefficient by
HSRL [13]. BSR is defined as:

R(r) =1+ Byp(r)/Bm(r) (6)
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Theoretically, the layers can be detected when R(r)>1. However, the unavoidable
lidar signal noise could lead to fluctuation of R(r) and wrong estimation of vertical
layer distribution. Consequently, the SNR should be considered, and the selected R(r)
threshold should be dynamically varied with signal noise to prevent the misidentifica-
tion. The uncertainty of R(r) is relevant with the error of 8, and j3,, according to Eq. 6.
In this study, the meteorological data for retrieval came from the nearby radiosonde
sites, which provided data twice a day. Therefore, the relative errors of f,,, f,, B,» @,
and §,, which rely on the meteorological data uncertainty, are neglected in the fol-
lowing procedures [26]. Then, the relative error of 8, becomes the critical parameter
determining the uncertainty of R(r) and the layer distribution. Mathematical details of
the relative error of the backscatter coefficient ¢g, are shown in Supplementary Infor-
mation S2 [40]. Assume the dynamical R(7) threshold is T(r), which is expressed as:

T(r)=1+¢p,(r)/ Bm(r) (7)

the feature would be detected when R(r) > T(r). The threshold method for feature detec-
tion could be defined as:

Bp(r) > &g, (r), feature
Bp(r) < ep, (r), clear sky (8)

In the following analysis, R(r) was also applied for cloud aerosol discrimination. The
R(r) higher than 10 is identified as clouds. Besides, the layers could also be classified
as ice clouds with depolarization ratio higher than 0.05, lidar ratio smaller than 40 sr,
and temperature lower than -20°C though the scattering ratio is smaller than 10 [25,
41]. The rest of the layers will be classified as aerosols.

Extinction coefficient retrieval

The iterative reconstruction method was used to retrieve the EC by Xiao et al.[24].
The basic principle of the iterative reconstruction method is a) estimate the close
numerical range of LR in different layers based on the Pre-retrieval results from Sup-
plementary Information S1. b) assume the original calibrated ATB and retrieved BSC
are accurate. c) repeat the iteration of LR in a different layer to reconstruct the layer
ATB. d) compare the reconstructed with original calibrated ATB and select the LR
that minimizes the error between the two ATBs. Before the iteration, an approxima-
tion of Gaussian probability density function Ps, was introduced for the lidar signal
noise model [42, 43], which is described as:

M M 2
Ps, =# exp | — (B Bidzeal (SP))
kY% 27TUBM ZUBM

)

For a detected layer, BM is the molecular channel ATB. S, is the initial value of the
LR for iteration and Bf‘jml (Sp) is the reconstructed ideal molecular channel ATB with-
out noise according to Eq. 5;0pu is the standard derivation of BM. The expected LR

would be estimated by minimizing the negative natural logarithm of Eq. 9, which is
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where [(S), BM) is assumed to be the loss function. Assume §p is the final expected result
of the LR, the LR iteration is then turned into a regularization problem:

Sy = argmin{l(Sy, BM) + 4 - |ISyll7v) (11)

where arg min{Z} means getting S, that minimizes the Z;/ is the regularization parame-
ter; The total variation seminorm of the LR ||Sp || is the correspondingly penalty function
and constraint for the smoothness of the LR, which could be expressed as [44]:

N-—-1 N,
K K—-1
ISpll =Y Fug|Spuk = Sparsrk| + D FnkclSpink — Spimis1 (12)

where, N and K represent that data consists of N range bins on the row axis and K pro-
files on the column axis; the subscripts # and k are indices to the rows and columns;
F, ; is the layer flag in the row and column (layer would be marked as 1 and clean air

n

would be marked as 0); |Sp,.x — Sp,n_l,_l’k! and |Sp,n,k — Sp,n,k+1| are the absolute value of
LR difference on the row and column direction. Since the signal fluctuation of adjacent
profiles in space-borne lidar is larger than that in ground-based lidar, the HSPH would
be larger compared with ground-based lidar. The regularization parameter 4 could be
smaller for space-borne lidar to constrain the impact of ||Sp H to a reasonable range dur-
ing the iteration.

Ground-based lidar networks or airborne lidar campaigns are often used for space-
borne lidar validation [45, 46]. The original data of ACHSRL would be processed by the
satellite research team, which is not available yet. In this study, the forward model sim-
ulation of ACHSRL and airborne campaign data in Qinhuangdao, China were used to
assess the accuracy and robustness of the retrieval algorithm. The description can be
found in Experimental Data.

Experimental data

Forward model simulation

The space-borne lidar forward model generally means the generator of simulated lidar
return signals and is often established for performance estimation [47]. The necessary
information of ACHSRL forward model includes: the configuration of ACHSRL, pro-
vided in Table S1, the noise model for shot noise, solar background noise, dark cur-
rent noise, thermal noise etc. [42]. The atmospheric scenes are listed in Table 1 [48].
The five individual scenes S1-S5 in Table 1 correspond to low-altitude aerosol, dou-
ble-layer aerosol, high-altitude aerosol, thin high-altitude cloud, and thick high-alti-
tude cloud. 100 profiles are set in a single scene, and the vertical resolution is 60 m. In
our MC simulation, each profile is corrupted by the noise generated randomly based
on the noise model. The EC is set to obey exponential distribution at low altitude and
Gaussian distribution at high altitude [49]. The averaged extinction coefficient (AEC)
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Table 1 Description of five scenes for the signal simulation of ACHSRL

Scenes Aerosol/Cloud Altitude(km) DR LR(sr) AEC(km~")
S1 Aerosol 0-3 0.1 35 0.04
S2 Aerosol 0-3 0.1 35 0.05
Aerosol 10-12 0.01 22 0.08
S3 Aerosol 8-12 0.01 20 0.045
S4 Aerosol 0-3 0.15 60 0.08
Cloud 16-17 0.5 30 0.025
S5 Aerosol 0-3 0.1 35 0.04
Cloud 10-12 04 25 0.25
=20 Parallel Channel(m'1sr'1) 105 Perpendicular Channel(m'1sr'1) 105 Molecular Channel(m'1sr'1) 10°
§1o G ——— NN Hm'a i“ﬂ _ Hm-ss
<0 100 200 300 400 500 i 100 200 300 40’0' 500 Ch 100 200 300 400 500 o
Profile Number Profile Number Profile Number

Fig. 3 Simulated ATB of the a parallel b perpendicular, and ¢ molecular channels

is the mean of each layer. DR and LR are constant, and only molecular signals are con-
sidered in the clean air.

Based on Egs. 1, 2, 3, 4 and 5, the MC simulated ATB are shown in Fig. 3. The sig-
nal is stronger in parallel channels, whether in the aerosol/cloud layers or the clean
air. Meanwhile, the layers are almost filtered out in the molecular channel due to the
expected low transmission for the Mie scattering spectrum.

Airborne campaign over Qinhuangdao

The A2P was designed to evaluate the performance of the space-borne HSRL and the
robustness of the retrieval algorithm. The configuration of A2P at 532 nm is shown in
Table S2 [33]. The flight data in Qinhuangdao City, Hebei Province, China, on March
14, 2019 was processed in this study [33, 34, 50]. The A2P flight tracks last from 02:40
to 03:40 (UTC) and cover ocean, coastal city, town, forest, and mountains etc., which
is marked in the red curved line in Fig. 4 (a). The green dots in Fig. 4 (a) are the CAL-
IOP laser footprints. For aerosol optical depth (AOD) comparison, two sun photome-
ters (CE318) are facilitated at Beidaihe (119.52°E, 39.85°N) and Funing (119.2°E, 39.9°N)
ground station, which are marked in Fig. 4 (a). Also, the Suizhong power plant (120.0°E,
40.1°N) at the coastal area is marked in Fig. 4 (a) with a passing time at 03:14. A2P flew
near the Beidaihe and Funing stations at 03:27 and 03:31, and the closest distance was
6.8 km and 14.3 km, respectively. The sun photometers products used for comparison
were the AODs at 500 nm wavelength in this study. The original resolution of the A2P
signal is 5 m in the horizontal direction (30 Hz repetition frequency, 150 m/s flight
speed) and 0.6 m in the vertical direction (250 MHz sampling rate). the averaged A2P
signals have a horizontal resolution of 300 m and a vertical resolution of 24 m. To better
evaluate the feasibility and robustness of the retrieval algorithm, the flight track is classi-
fied into three types based on MODIS surface type products.

Page 8 of 20



Ke et al. PhotoniX (2022) 3:17 Page 9 of 20

Water Bodies
Barren
40.5 Snow and Ice
z Urban area
§ Croplands
= 395
3 4 Power Plant Wetlands
A2P footprint Grasslands
CALIOP footprint Shrublands
38.5 * Beidaihe-CE318 .
* Funing-CE318 v - ores
117 118 119 120 121 117 118 119 120 121
Longitude(°E) Longitude(°E)
(C) 1 2532nm Attenuated Backscatter coefficient (k’1sr'1) 18:25 UTC 2019/03/14 0
£ o
% 0.01
5 6
£ 0.001
< 3
0 0
(d),,§32nm Attenuated Backscatter coefficient (km™'sr”') _05:28 UTC 2019/03/15
£ 15 E@
% = 0.01
E 10
g 5 0.001
0 : T 0
38°N 39°N 40°N 41°N 42°N

Fig. 4 a Map of the A2P flight track in red line and the closest CALIOP laser footprints in green dots. Beidaihe
and Funing ground stations with CE318 are marked in asterisks. Power plant is also marker. The background
map is the MODIS reflectance in true color observed at 02:25 UTC on March 14, 2019; b Map of MODIS
surface types. The flight track over Forest, Town, and Ocean are marked in black, white, and red, respectively;
c-d Plots of the CALIOP ATB at 532 nm on Mar 14 and 15, 2019 in color bar

The MODIS surface corrected reflectance is used as a background in Fig. 4 (a)
to show the actual atmospheric conditions on March 14 [51]. Based on the MODIS
MCD12Q1 surface type product, different surface types on the flight track are dis-
played in Fig. 4 (b) [52]. The flight track is roughly classified into three surface types:
Ocean, Town, and Forest. Town mainly includes urban area, cropland, and grassland
in coastal areas; Forest mainly includes farmland, wetland, grassland, shrub, and for-
est. AOD retrieved by A2P at 532 nm was compared with the MODIS MCD19A2
AOD at 550 nm, which is retrieved with the Multi-Angle Implementation of Atmos-
pheric Correction (MAIAC) algorithm [53]. The overpass time of MODIS was 03:35
(UTC).

CALIOP L2 profiles were also used to compare A2P retrievals [54]. The closest
overpass time of CALIOP was 18:25 (UTC) on March 14 and 05:28 (UTC) on March
15, and the closest CALIOP laser footprint is 105 km and 98 km away from the A2P
flight track, respectively. The footprints are also grouped into three surface types as
shown in Fig. 4 (b). The CALIOP L1 ATB products are shown in Fig. 4 (c)-(d). Cloud
layers with the strongest ATB were located at 3—-6 km on March 14 and at 10 km
on March 15. The profiles of CALIOP located in 38°N -41.5°N were included for

comparison.
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Results and discussion

Retrieval results with simulation data

BSC, EC, and LR were retrieved for end-to-end simulation and the corresponding errors
are shown in Fig. 5. The error of each parameter in Fig. 5 (d)-(f) came from a comparison
with the initial assumption in Table 1. From Fig. 5 (a)-(c), the aerosol/cloud layers were
accurately identified. The area with largest error appears at 0-3 km in profiles 400—-500
mainly due to the rapid laser power attenuation caused by thick clouds at 10-12 km. In
the light of the statistical rules for standard deviation, it may be interpreted that 95.4%
data of BSC have errors less than 12% and 95.4% data of EC have errors less than 24%.
Comparing to the uncertainty of CALIOP official BSC products (~20-30%) and EC
products (~40%), this retrieval algorithm is more consistent and robust [17].

Retrieval results of airborne campaign

The retrieval results of airborne campaign are shown in Fig. 6. The laser path length is
estimated from the GPS altitude, the roll and pitch angles of aircraft. Since the laser inci-
dent angle varied when the aircraft’s attitude changed, the original signals were removed
when the laser path length was much greater than the GPS altitude to avoid invalid
retrievals. According to Fig. 4 (b), the flight data have been grouped into seven scene
types to evaluate the algorithm performance under different measurement conditions
(Oceanl, Townl, Forestl, Town2, Ocean2, Town3, Forest2), separated by red straight
lines in Fig. 6.

For the A2P surface identification showed in Fig. 6 (g), the ocean altitude is set to be
even and close to zero. Since the flight tracks in the Forest area are close to the Yan-
shan Mountains, the surface altitude in Forest fluctuated up to 0.5-1 km. In the mean-
time, the Forest surface altitude is close to the CALIOP surface at 40-41°N from Fig. 4
(c)-(d). The above results showed accurate surface detection and range correction in the
retrieval algorithm.

There were layers between 2—4 km with BSR higher than 10, LR lower than 30 sr,
and drastic scattering change during 02:55 to 03:10 over Forestl and at 03:34 over For-
est2. These layers were detected as clouds and the rest were detected as aerosols [25].
Thick cloud layers were seen at 02:58—02:59, 03:05—03:07, and 03:34 when the laser sig-
nals were fully attenuated and no returns from anything below these layers. Meanwhile,
semi-transparent clouds were seen at 02:55-02:57, 03:00-03:04, and 03:08—03:10. Note
that the DR of clouds at 03:00-03:04 were 0—0.1, lower than others as shown in Fig. 6

... Backscatter Coefficient(m'1sr'1) Extinction Coefﬁcient(m'1) Lidar Ratio

20 10 10° 80
é (a) (b) e — © —
g 10 —_ 1058 — 107 40
g o " 107 10° 0
~ . Error of Backscatter Coefficient Error of Extinction Coefficient Error of Lidar Ratio
€ - 40% - - 40% - - - 40%
£7@ \ © - ® —
10 R 0 = ] o | 0
.é 4.85%+3.51% ‘ 14.0%%4.50% N . 13.3%+4.42% ‘
3 () soemnes M ., - 40% . 40%

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Profile Number Profile Number Profile Number

Fig. 5 a-c BSC, EC, and LR retrievals. d-f Error of BSC, EC, and LR retrievals compared with initial assumption
in Table 1. The mean and standard deviation of error are shown in the lower left corner
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(b). These layers could be detected as water or mixed-phase clouds [10, 25]. Over other
periods of time, the DR of clouds were higher than 0.15. Since the air temperatures were
between -10 and -20 °C in the layers of 2—4 km on Mar 14, 2019, these clouds detected at
02:55-03:00, 03:05-03:10, and 03:34 were probably cirrus (ice) or mixed-phase clouds.
The optical properties of cirrus (ice) observed in this study were consistent with those
from NASA’s ARCTAS field experiment, which indicated the LR of ice were 10—40 sr
and the DR were 0.15-0.4.

Since the selected Ocean area in this study is close to land, the LR of aerosol lay-
ers over Oceanl and Ocean2 ranged from 20 to 40 sr, and their DR were below 0.1 as
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shown in Fig. 6 (b)-(f). These aerosols may be a mix of marine aerosols with aerosols
transported from land, especially along the border of Ocean2 and Town2&3. Such
DR and LR of marine aerosols were also previously reported by NASA and DLR’s air-
borne campaigns (DR from 0 to 0.1 and LR from 10 to 40 sr) [55, 56]. The LR of aero-
sols over Town and Forest areas were between 30 and 55 sr and their DR varied from
0 to 0.1, suggesting possible urban aerosols and smoke from human activities [55, 56].
As shown in Fig. 6 (c)-(e), the aerosol BSC and EC retrievals over Forest and Town
have higher values than those over Ocean. This may be attributed to the emissions
from the straw burnings in Forest, the industrial and other human activities in Town.
For example, there is a power plant at the coastal area from Fig. 4 (a) [33, 34, 50].

Comparison of A2P profiles with CALIOP
Comparisons with CALIOP L2 aerosol/cloud profiles were made to demonstrate
the A2P retrieval accuracy. It may not be appropriate to compare profile-by-profile
since the closest distances between CALIOP footprints and A2P tracks are 105 km
on March 14 and 98 km on March 15, and the time lag is 15 h and 25 h between
two measurements. The BSR of CALIOP was calculated from Eq. 6 and the f5,, was
estimated from the molecular number density products. The vertical profiles were
averaged horizontally for different surface types shown in Fig. 3 (b) for both A2P and
CALIOP measurements. The number of averaging are listed in the last column of
Table 2. The comparison results between A2P and CALIOP are shown in Fig. 7 and
Table 2. Three rows from top to bottom in Fig. 7 are the results over Town, Ocean,
and Forest; four columns from left to right are the results of BSR, BSC, EC and
LR. Good consistency was found of the profile distributions at 0-3 km over Town,
0-1.5 km over Ocean and 0—4 km over Forest. The BSR, BSC and EC over Forest are
much larger than that over Town and Ocean because clouds exist over Forest, while
the LRs of A2P distribute more uniformly than that of CALIOP due to the depend-
ence on LR model assumption in CALIOP retrieval algorithm. Statistics of the results
are listed in Table 2.

In Table 2, the statistical results are the mean and standard deviation (STD) calcu-
lated from all the valid bins over the same surface type. For the comparison over For-
est, the aerosol and cloud layers are distinguished to avoid significant bias caused by

Table 2 Retrieval mean and STD of optical parameters from all the valid bins over Town, Ocean and

Forest

Scene Lidar BSR(a.u.) BSC(10™* xkm™'sr™") EC(102xkm~")  LR(sr) Nprofite

Town A2P 1.60+0.20 7.9642.89 2854113 34824607 194
CALIOP  1.60£034 8444513 3754227 44354344 96

Ocean A2P 1564027 7494370 2544136 284346501 384
CALIOP 1544030 803+£4.76 3.53£2.09 44 24

Forestco,y ~ A2P 143741540 14812416923 330744111 22294529 530
CALIOP 149741975  155314220.12 556247631 40234+7.02 58

Forestpegs AP 1684083 8704939 3074258 36024522 530
CALIOP 1544062 583+£6.09 284+233 51.70£544 58

@ All the LR of CALIOP in Ocean are 44, so the STD is zero

Page 12 of 20



Ke et al. PhotoniX

(2022) 3:17
(a)-(d): Town (e)-(h): Ocean (i)-(1): Forest A2P CALIOP
4 4 4 1
) = (b) © (d)
>08
.3 3 3 g
% Bo6
o) 2 2 2
3 504
= g
<
1 1 1 o2
0 0 0 0
0 1 2 3.0 0.001 0.002 0 0.05 0.1 10 30 50 70
3 3 3 1
(e) ® (@) (h)
§.0.8
€2 2 2 e
< Jos6
3 z
3 504
21 1 1 2
< o
402
0 0 0 0
0 1 2 3 0 0.001 0.002 0 0.05 0.1 10 30 50 70
5 - 5 - 5 1
0] 0] (k) (0]
4 >08
B 2
<3 306
3 =
3 : 304
£ 2y --- A2P cloud 2 --- A2P cloud 2ff  --- A2P cloud S
< --- CALIOP cloud --- CALIOP cloud [l ---CALIOPcloud | §
1 — A2P aerosol 1 — A2P aerosol 1 — A2P aerosol a 0.2
—— CALIOP aerosol —— CALIOP aerosol —— CALIOP aerosol
0 0 0 0
0 15 30 0 0.02 0.04 0 0.5 1 10 30 50 70
BSR(a.u.) BSC(km'sr™) EC(km™) Lidar ratio(sr)
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the data average. The vertical profiles of mean and STD are noted as Z;(z) and o0 (2),
U

where Z = R, B, o, S; i=A2P, CALIOP; j = Town, Ocean, Cloud, Aerosol.

As shown in Table 2, all the STD of the A2P retrievals over Town are smaller than
that over Ocean because of the higher SNR from heavy aerosol loads. The LR of A2P
over Town is around 35 sr, which suggests the possible mixture of urban and marine
in coastal areas. At the same time, the LR over Ocean is smaller (28 sr), probably due
to the abundant existence of marine [55, 56]. However, the LR of CALIOP over Town
and Ocean are consistent (around 44 sr) mainly attributed to CALIOP’s algorithm.
Additionally, the STD of A2P measurements (BSR, BSC, EC) are all smaller than
those of CALIOP, especially over Town, indicating the better precision and accuracy
of HSRL.

The official L2 vertical feature mask (VFM) products were used for the cloud-aero-
sol discrimination (CAD) of CALIOP [54], while the A2P clouds were extracted with
a BSR>10 [25]. The profiles were horizontally averaged after the CAD since some
clouds and aerosols exist at the same altitude in Forest area as is shown in Fig. 6 (d).
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The large scattering difference between clouds and aerosols would interfere with the
comparison and verification without CAD. The backscatter and extinction intensity of
clouds are 1-2 orders of magnitude higher than that of aerosols as shown in Fig. 7 (i)-
(k). Due to the spatiotemporal difference, the cloud heights of CALIOP were between
3—4 km, and the layer heights of A2P was between 2.2 and 3.8 km. The STD of A2P
cloud heights is lower than that of CALIOP. On the contrary, the STD of A2P aerosol
heights is higher than that of CALIOP, which may be influenced by the inaccurate
identification of layers (identified as aerosols with 3 <BSR <10) at the edge of clouds.
The cloud LR of A2P is around 22 sr. These high-DR (> 0.15) layers were probably cir-
rus or mixed-phase clouds, while the aerosol LR of A2P is higher (36 sr) for a mixture
of smoke and urban. On the other hand, the LR of CALIOP is much higher than that
of A2P, which are 40 sr in clouds and 51 sr in aerosols [55, 56].

The correlations between A2P and CALIOP profiles are shown in Fig. 8. The param-
eters used for correlation analysis are the Pearson correlation coefficient (R), the
mean bias (MB), and the factor of exceedance (FoE). The mathematical definitions are
described in Supplementary Information S3 [57]. The correlation coefficients R are 0.79
for BSC and 0.81 for EC in Town, respectively, while the MB are 14.18% for BSC and
21.71% for EC. Moreover, the FoE of BSC in Town is -0.08 (nearly equal), which shows
a good agreement with BSC comparison. Since the LR of A2P in Town is lower than
CALIOP (34 sr vs 44 sr), most EC of A2P is lower than CALIOP (with a -0.37 FoE). As
for comparison in Ocean, the correlation coefficients R are 0.57 for BSC and 0.58 for EC;
The MB is 41.13% for BSC and 37.04% for EC. Though the FoE of BSC is zero, discrepan-
cies would still exist due to the lack of available data for CALIOP: only 24 profiles dis-
tributed at 0—1.2 km, while the A2P detected 384 profiles at 0—3 km. Except for the data
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availability, the LR assumption of CALIOP and the spatiotemporal difference between
two lidar instruments could also lead to disagreements. In Forest area, the correlation
coefficients are 0.82 for BSC and 0.81 for EC. The MB are 140% for BSC and 72% for EC.
The aerosol layers significantly affect the large MB at around 3 km from Fig. 8 (f) (h).
Besides, the aerosols below the cloud layers often possessed low SNR due to the cloud’s
rapid attenuation of laser energy.

AOD comparison with MODIS and ground-based sun photometers

After cloud screening, the clear-sky A2P AOD retrievals at 532 nm were also compared
with MODIS MCD19A2 (550 nm) and sun photometers (500 nm) AOD products, as
shown in Fig. 9. The AOD increased from Oceanl to Townl, Forestl to Town2, and
Ocean2 to Town3, mainly due to the human activities in the Town and coastal area. As
expected, the largest AOD change occurred at 03:14 when the aircraft was passing over
the power plant, according to Fig. 4 (a). However, the aerosol loads over ocean were rela-
tively low, so there was a decrease of AOD from Town2 to Ocean?2.

For better spatial matching between A2P and MODIS data, the mean of the MODIS
AOD over the A2P flight track is used for comparison. Consequently, the MODIS AOD
in Fig. 9 (a) does not change with time but varies geographically. The comparison in
flight time between 03:00-03:30 (UTC) shows that the A2P AODs are overall lower
than MODIS AOD:s. Since the vertical integral path length of A2P (7 km) is shorter than
MODIS orbit height (705 km), the MODIS AOD are expected to be higher in cloud-free
scenes. The correlation coefficient between the two AODs is 0.71 (Fig. 9 (b)). The FoE is
-0.18, which means 68% of A2P AODs are smaller than MODIS AODs.

Table 3 shows the comparison between AODs from A2P and sun photometers (CE318)
at Beidaihe and Funing station on March 14, 2019. The time in Column 1 and 5 is the
data collection time of sun photometers. The distance between A2P and sun photom-
eters is listed in Column 4 and 8.

The diagram of comparison results between A2P and sun photometers is displayed in
Fig. 10. The A2P AOD retrievals were generally smaller than those from the sun pho-
tometers at both stations except at 02:59 at Beidaihe station. The lower AOD at 532 nm
were reasonable after taking into account of the measurement wavelength dependence
[58]. The exception at 02:59 may be attributed to the large distance between the A2P and
sun photometer. Meanwhile, the mean of AOD at Beidaihe (0.119) is smaller than that

(a) (b)
04 T T T 0.4 =
—~ Ocean1|Town1| Forest1 Ocean2 Forest2| R=0.71
3 03F Town2¥ Town3 X 0.3} MB=32.57% y 04
£ { g FoE=-0.18 ,*
Q — A2P ’
[} o B
E 0.2 %(l MODIS 2 0.2 7’
S o
Q 4 b & @
B01f \}V‘A ‘0 : W P { <o
o W ;}\ - 3 °
Yy A
X X L X L 0
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Time(UTC) MODIS AOD(a.u.)

Fig. 9 Comparisons between A2P AOD at 532 nm and MODIS AOD at 550 nm for cloud-free scenes. a A2P
AODs measured from 02:40-03:40 (UTC) are plotted in blue line. MODIS AODs observed at 03:35 (UTC) are
plotted in orange line. b Correlation between MODIS and A2P AODs
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Table 3 AOD measurements between A2P and sun photometers (CE318) at Beidaihe (BDH) and
Funing (FN) station on March 14,2019

Time A2P@532nm BDH@ 500 nm Distance /km Time A2P@532nm FN@ 500 nm Distance /km

02:44  0.086 0.094 100.1 02:42 0.074 0.135 107.9
02:59 0.122 0111 114.7 02:52 0.137 0.147 65.5
03:14 0124 0.132 442 03:.05 0.139 0.156 60.7
03:29 0.103 0.139 7.1 03:13 0.116 0.133 72.7
- - - - 03:17 0.102 0.141 654
- - - - 03:29 0.103 0.159 535
Mean 0.109 0.119 - - 0.118 0.145 -
02 ] I ] 1
s @ BDH B A2P © FN @ A2P
3
So.1s5} ° e e
a 0 a o * ®
g | s |
8 oafi ? 8 o
2 | 8 s ; s
O 8 i 5
0,05 —— - M B ;
02:50 03:00 03:10 03:20
Time(UTC)

Fig. 10 Comparison between AODs from A2P and sun photometers on March 14, 2019. The blue and orange
circles are the AODs from the sun photometer at 500 nm band at Beidaihe and Funing station, respectively;
the blue and orange squares are the AODs at 532 nm from A2P

at Funing (0.145), which is consistent with the observation from Wang et al. (AODs at
Beidaihe and Funing are 0.108 and 0.157) [33]. Overall, the AOD comparison with sun
photometer at ground stations showed a good agreement.

Conclusion

This study presented and validated an imperative retrieval algorithm for ACHSRL,
which will supplement the U.S. CALIOP data for global lidar observations of aerosols
and clouds and will make a significant contribution to atmospheric science research after
the successful launch. This study conducted a comprehensive analysis of the algorithm,
including ATB calibration, feature detection and EC retrieval using imaging denoising,
threshold discrimination, and iterative reconstruction methods.

We demonstrated the algorithm feasibility with the end-to-end MC simulation and
showed that the 95.4% of BSC retrievals had errors less than 12% and 95.4% of EC
retrievals had errors less than 24%. We also demonstrated the accuracy of feature
detection algorithm with the data from the 2019 airborne campaign at Qinhuangdao.
Meanwhile, the aerosol classifications were reasonable and consistent. Most aerosols
over the Town and Forest regions were identified as mixture from urban sources and
smoke from human activities, while over the coastal area or the ocean, the dominant
aerosol types are marine aerosols. Furthermore, the cirrus or mixed-phase clouds
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were also well identified based on their optical properties (BSR>10, DR>0.1, LR < 30)
and cloud centroid temperature.

Afterwards, the accuracy of the retrievals were validated with satellite observations
and ground-based sun photometers. High correlations between A2P and CALIOP
vertical profiles of aerosols and clouds were achieved and the errors of A2P BSC and
EC were smaller than those of CALIOP except for the aerosol layers over Forest. A2P
AODs were consistent with those from MODIS, showing a correlation of 0.71. The
spatial variation of A2P AODs results was reasonable over a variety of surface types.

In the future, the A2P tracks could fly along the footprint of ACHSRL to obtain
a better spatiotemporal correlation and allow better comparison and validation.
The accuracy of the algorithm can be further validated and optimized for variety of
atmosphere scenes and surface conditions with the measured data from ACHSRL in
the near future.

Abbreviations

lidar Light detection and ranging

ACHSRL  Aerosol cloud high-spectral-resolution lidar

MC Monte-Carlo

A2P Airborne ACHSRL prototype

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization
MODIS Moderate-resolution Imaging Spectroradiometer
ACI Aerosol-cloud interaction

ACDL Aerosol and Carbon Detection Lidar

IPDA Integrated Path Differential Absorption

CALIPSO  Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
EC Extinction coefficient

LR Lidar ratio

EarthCARE Earth, Clouds, Aerosols and Radiation Explorer
FPI Fabry-Pérot interferometer

ATLID ATmospheric LIDar

SIBYL Selective iterative boundary locator

SCA Scene classification algorithm

HERA Hybrid extinction retrieval algorithm

BM3D Block matching 3D filtering

ATB Attenuated backscatter coefficient

SNR Signal to noise ratio

PMT Photomultiplier tube

APD Avalanche photodiode detector

BSC Backscatter coefficient

DR Depolarization ratio

AEC Averaged extinction coefficient

AOD Aerosol optical depth

MAIAC Multi-Angle Implementation of Atmospheric Correction
BSR Backscatter ratio

STD Standard deviation

CAD Cloud-aerosol discrimination

VFM Vertical feature mask

MB Mean bias

FoE Factor of exceedance
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