
Ultrafast (600 ps) α‑ray scintillators
Richeng Lin1†, Yanming Zhu1†, Liang Chen2†, Wei Zheng1*  , Mengxuan Xu3, Jinlu Ruan2, Renfu Li4, Titao Li1, 
Zhuogeng Lin1, Lu Cheng1, Ying Ding1, Feng Huang1* and Xiaoping Ouyang2,5* 

Introduction
In recent years, high-energy ray imaging has been widely used in the fields of medi-
cal diagnosis, security and scientific research [1–3]. Time response and light yield are 
considered to be the most important evaluation indices of dynamic imaging quality. In 
general, high-energy ray imaging relies on scintillators that can convert high-energy rays 
into visible or ultraviolet photons [4, 5], which gives a privilege to the fluorescence decay 
time and light yield of scintillators to determine the quality of high-energy ray imaging.

Due to the high light yield, thallium-doped cesium iodide is widely used in various 
situations. However, its long fluorescence decay time that is almost up to 1000 ns lim-
its its application in some fields, such as ultrafast dynamic probing. Therefore, finding 
a scintillator with ultrafast luminescence characteristics becomes a research subject 
attracting much attention. Recently, various perovskites have been taken as focus due 
to their low preparation cost and excellent emission performance [6–12]. Huang et al. 
reported an all-inorganic perovskite (CsPbX3, X = Cl, Br, I) nanocrystalline scintillator 
with a luminescence decay time of 44 ns [13]. Yang et al. synthesized a kind of nontoxic 
double perovskite (Cs2Ag0.6Na0.4In0.85Bi0.15Cl6) in the research where the fabricated sam-
ple was ground into powder and pressed into a 2-inch slice with the light yield commen-
surate with that of commercial scintillator thallium-doped cesium iodide. What’s more, 
this double perovskite shows a microsecond fluorescence decay time [14]. Compared 
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with other perovskites, the near-band-edge (NBE) radiation of gallium-doped zinc oxide 
(ZnO:Ga) has a sub-nanosecond ultrafast time response, which makes it a promising 
candidate material for detecting ultrafast signals [15–22]. In addition, its fluorescence 
emission of defects has been greatly inhibited by the maturing hydrothermal crystal 
growth technology, which promotes the development of large-size ZnO:Ga single-crys-
tal scintillators.

In this work, we grow a 2-inch ZnO:Ga single crystal wafer via hydrothermal method. 
In the light of the band-edge radiation characteristics of ZnO:Ga, that is, low light yield 
and fast response, we set up an alpha-ray excited single-particle time-resolved emission 
spectrum measurement system, based on which the decay time of band-edge fluores-
cence of ZnO:Ga single crystal is directly obtained. In addition, according to a high spa-
tial resolution (2.63 lp mm−1) at high X-ray dose, the prospect of ZnO:Ga single crystal 
as a promising scintillator has been suggested and proved.

Materials and methods
ZnO:Ga single crystal growth

We grow a high-quality ZnO:Ga single crystal via hydrothermal method. A large-size 
autoclave made of high-hardness Ni–Cr alloy is taken as the reaction vessel for ZnO:Ga 
fabrication, which can be divided into growth zone and dissolution zone. In the growth 
zone, high-quality ZnO seed crystals are distributed there. In the dissolution zone, Zinc 
oxide and gallium oxide powders sintered at high temperature are stacked with a mass 
ratio of 99:1. Fill the autoclave with an aqueous solution containing mineralizer, and then 
heat the growth zone to 400℃ with a temperature gap kept between the two zones all 
along, that is, the temperature of dissolution zone is 20 ~ 40℃ higher than that of growth 
zone. Besides, during the whole growing process, the pressure in autoclave is maintained 
at 80–100 MPa. Under this condition of both high temperature and pressure, the mixed 
powder in dissolution zone will dissolve into the solution, and then the bottom solution 
will rise and inflow the top growth zone due to the existence of temperature difference. 
Finally, the top solution is supersaturated, and then ZnO:Ga begins to grow gradually.

Material characterization

All the data and spectra of this work are achieved through different devices or based 
on various systems. The XRD measurement in Figure S1 takes use of an Empyrean dif-
fractometer with Cu-Kα ( � = 1.5406Å ). The ultraviolet photoluminescence (UV-PL) 
spectrum in Fig. 1(c) is measured via a self-built fluorescence spectrum measurement 
system which is equipped with a 266 nm pulsed laser and a spectrometer (QE65 Pro, 
Ocean Optics) with wide detection range from 200 to 900 nm. The transmission spec-
trum of ZnO:Ga is performed via ultraviolet spectrophotometer (SHIMADZU UV-3600 
Plus) in the range from 300 to 800 nm. The infrared absorption spectrum measured in 
Figure S3  is achieved by Fourier-transform infrared spectroscopy (IRAffinity-1S). The 
Raman spectrum in Figure S4 employs the Renishaw inVia reflex Raman spectroscopy. 
The X-ray photoelectron spectrum in Figure S5 are plotted by Thermo fisher ESCLAB 
XI of Songshan Lake Materials Laboratory. The AFM topographic image in Figure S6 is 
scanned with CSPM5500. The HRTEM measured are obtained by FEI, Talos F200 S.
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Time‑resolved radioluminescence measurement

The time-resolved radiation decay time is measured by a single-particle time-resolved 
emission spectroscopy (SP-TES) system. The schematic diagram of measurement is plot-
ted in Fig. 2. The system uses single-photon counting technology (SPCT) to collect sig-
nals and consists of two detection subsystems, the full-wave path and the single-photon 
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Fig. 1  The growth and characterization of ZnO:Ga single crystal. a Growth diagram of ZnO:Ga single crystal 
via hydrothermal method. b Single crystal rock curve of ZnO:Ga single crystal. The illustration is the optical 
photograph of as-grown large-size ZnO:Ga single crystal. c Ultraviolet photoluminescence spectrum of 
2-inch ZnO:Ga wafer. Inset is photograph of the ZnO:Ga wafer. d High-resolution transmission electron 
microscopy (HRTEM) image of the ZnO:Ga single crystal. The selected-area diffraction pattern shows distinct 
spots with hexagonal shape, indicating a high quality of the ZnO:Ga single crystal. e and (f) show the 
enlarged atoms pattern, corresponding to the b and c plane of crystal respectively. The right diagrams are 
the crystal structure viewed along b and c plane. The red and gray spheres represent oxygen and zinc atoms, 
respectively
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path. The full-wave channel output signal is relatively stable, so the signal recorded in 
multiple channels depends on the single-photon signal. We can equate each single pho-
ton signal as randomly extracting a photon from a single alpha particle excitation pro-
cess, so the single photon signal represents the luminescence of the sample. A high-gain 
PMT (ET 9813) is set close to the ZnO:Ga wafer to collect photons as the zero-time 
signal as many as possible. Another fast-response microchannel plant PMT (MCP-PMT, 
Hamamatsu R3809U-50) is kept far away from the sample to collect single-photon signal. 
When the single-photon signal is transmitted to Ortec 567 time-to-amplitude converter, 
a luminous waveform with a corresponding wavelength of 394 nm can be obtained. Place 
a Newport Oriel 74,125 Cornerstone 260 UV–Vis-1-4 m Monochromator before MCP-
PMT, and then the color plot of Time-resolved emission spectrum containing both spec-
tral and temporal information of ZnO:Ga single crystal can be achieved.

Fig. 2  Ultrafast radioluminescence of ZnO:Ga single crystal. a Schematic diagram of radioluminescence 
mechanism of ZnO:Ga single crystal. CB and VB denote the conduction band and valence band. e and h 
are electron and hole. b Spectra of the ZnO:Ga under various excitations show that obvious redshift with 
excited energy. c Schematic diagram of time-resolved radioluminescence measurement. d Single-particle 
time-resolved spectrum of ZnO:Ga excited by alpha particles. Its illustration corresponds to the logarithmic 
form of luminous waveform. e Reported decay time of various scintillators [26–29]
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Transient absorption spectrum measurement

The color plot of femtosecond TA spectrum is shown in Fig.  3(c), where the probed 
absorption coefficient is collected by a transient absorption spectrometer (Helios, Ultra-
fast System) with a wide detection range from 390 to 1600  nm. The pumped femto-
second laser whose model is Spitfire is from Spectra-Physics. With the help of optical 
parametric amplifier, the wavelength range of that pump laser can be adjusted casually 
between 300 to 2400 nm.

X‑ray imaging measurement

The sketch map of X-ray imaging measurement is shown in Fig.  5(a). Excited fluo-
rescence is recorded by a camera through a mirror. Here, the adopted X-ray source 
is TUB00140-W06 of Moxtek whose maximum power is 12 W and that can be tuned 
via changing voltage or current. The X-ray dose rate corresponding to different power 
is detected by radiation power meter (Didotime-r, QUART). The camera is iKon-M, 
ANDOR, which is equipped with UV-enhanced lens (Nikon Rayfact PF10545MF-UV). 
During the measurement, the shutter was normally open. The adopted line pair test pat-
tern (70,358, QUART) is plotted in Figure S8(a), whose material is lead foil, thickness is 
0.03 mm, and maximum line pairs were 20 lp mm−1.

Results and discussion
In this work, the crystal growth method we use is an improving hydrothermal method. 
As we all know, the advantage of the hydrothermal method is that it is easy to achieve 
low temperature equilibrium crystal growth, which is very critical to obtain crystals 
with excellent crystal quality and uniform doping. The principle of crystal growth is 
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shown in Fig. 1(a), and the details of growth process are described in the Methods sec-
tion. The illustration in Fig. 1(b) shows the photograph of the large-size ZnO:Ga single 
crystal whose appearance is a dark blue hexagon. Its surface topography and X-ray dif-
fraction (XRD) patterns are described in supporting information [23]. According to the 
single crystal rocking curve plotted in Fig. 1(b), the full width at half maxima (FWHM) 
of ZnO:Ga single crystal is 23.4 arc sec, which is much lower than that of ZnO:Ga film 
reported so far, [24–26] indicating that the ZnO:Ga single crystal fabricated by hydro-
thermal method has high lattice integrity and low defect density. After wire cutting and 
polishing, a 2-inch ZnO:Ga wafer is obtained with its optical photograph shown in the 
illustration of Fig. 1(c). Via a 266 nm pulsed laser with a frequency of 2 MHz, the ultravi-
olet photoluminescence (UV-PL) spectrum is obtained and displayed in Fig. 1(c), where 
only a single emission peak is observed with a corresponding wavelength at 380  nm 
[27]. In Fig.  1(d), The crystal structure of the obtained ZnO:Ga was characterized by 
HRTEM, in which the selected area diffraction showed only one set of lattices of ZnO, 
which could be attributed to the small amount of doping (ppm level) of Ga. In this work, 
the carrier concentration of the ZnO:Ga single crystal is about 1018 cm-3. In addition, 
the complete ZnO lattice also illustrates the high crystalline quality of the crystal, which 
enables the crystal to have a high light yield. The enlarged atoms patterns (Fig. 1(e) and 
(f )) corresponding to the b and c plane of crystal respectively show consistency with 
crystal structure. The results show that the ZnO:Ga single crystal grown by hydrother-
mal method has high crystal quality.

The mechanism of radioluminescence (RL) of ZnO:Ga single crystal is plotted in 
Fig. 2(a). Once ionizing radiation (alpha-ray and X-ray) reaches ZnO:Ga single crystal, a 
large number of inner-shell electrons and valence electrons will be pumped into conduc-
tion band and even vacuum-energy level and thus generate extensive hot electrons and 
high-energy holes. At the same time, a great number of secondary electrons are gen-
erated by inelastic electron scattering and auger process to achieve low-energy carrier 
multiplication. These low-energy carriers are thermalized in an ultra-short time scale 
and then trapped by luminescent center. Finally, abundant ultraviolet photons will be 
released from lattice. Under different excitations, the spectra of ZnO:Ga single crystal 
was shown in Fig. 2(b). When the 266 nm laser is used as excitation, the peak of spec-
trum is at ~ 380 nm, which corresponds to the band gap of ZnO. The shape of emission 
peak is not Gaussian, but has a low-energy shoulder, which can be attributed to dop-
ing Ga atoms. It is also noticed a red-shift of the emission peak with increasing excita-
tion energy. We believe that the reason for this phenomenon is that the near-band-edge 
(NBE) emission of crystals is difficult to avoid the effect of self-absorption. In addition, 
under the excitation of x-ray and α-ray, the luminescence intensity of ZnO is smaller, 
and the effect of self-absorption is more obvious, which is the reason for the red shift 
of the emission peak. This explains why the intrinsic ZnO has almost no fluorescence 
under the excitation of high-energy rays.

As we elaborated above, the decay time of scintillator is one of the critical factors to 
affect the quality of high-energy ray imaging. Collecting luminous waveform via oscil-
loscope is usually the simplest pattern to obtain the information about time response. 
However, ZnO:Ga single crystal is always considered as a scintillator with low light yield, 
which suggests that the signal-to-noise ratio (SNR) of collected luminous waveform is 
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too low to distinguish the signal from the noise. In order to overcome this defect, we 
designed a time-resolved radioluminescence measurement system based on single-pho-
ton counting technology (SPCT), whose detailed diagram is shown in Fig. 2(c) [28, 29]. 
One high-gain photomultiplier tube (PMT) is set close to the ZnO:Ga wafer to collect 
photons as the zero-time signal as many as possible. Another fast-response PMT coupled 
with monochromator is kept far away from the sample to collect single-photon signal. 
When the single-photon signal is transmitted to Ortec 567 time to amplitude converter, 
a luminous waveform with a corresponding wavelength of 394  nm can be obtained. 
Here, we use alpha-particles emitted from 241Am source (11000 Bq) to bombard ZnO:Ga 
wafer. The luminous waveform of ZnO:Ga single crystal is plotted in Fig. 2(d), where the 
number of emitted ultraviolet photons whose energy is 3.15 eV begins to attenuate in 
the form of single exponential function after a short-time increasing process. Figure 2d 
shows the typical waveform of a ZnO sample obtained by the SPCT. The superposition 
of coincidence events is achieved by greatly eliminating the interference of noise. The 
rise time of the luminescence in Fig.  2d is only 0.38  ns, and the tail of the waveform 
achieves single exponential decay within more than three orders of magnitude, indicat-
ing that the results truly show the time response characteristics of the sample. The decay 
time constant is 0.64 ns, indicating that our system can accurately measure the lumines-
cence decay time of scintillators with weak luminescence and fast response. By fitting 
the afterglow curve with single e exponential function that y = A ∗ exp(−x/τ)+ y0 , the 
decay time τ of ZnO:Ga single crystal is obtained, that is almost 600 ps.

The performance of conventional inorganic scintillators and emerging perovskite 
scintillators was statistically shown in Fig. 2e [30–33]. At the same time, the proper-
ties of similar ZnO and its doped materials, such as ZnO:In, ZnO:Sc and ZnO:Cd 
were also systematically observed [34, 35]. It is found that ZnO:Ga material has 
obvious advantages in luminescence yield. To perform scintillation tests on natural 
undoped ZnO and ZnO:Ga single crystals, it found that almost no scintillation was 
observed in ZnO, which may be due to the fact that the emission and absorption of 
ZnO are almost overlapping, leading to fatal self-absorption of scintillation, which is 
inherently inefficient. In contrast, the introduction of Ga element makes the emis-
sion avoid the self-absorption, so ZnO:Ga has a higher light yield. Furthermore, Ga 
doping did not lead to additional emission peaks, and the near-band-edge emission 
still dominated as the fast component, which had advantages over ZnO doped with 
other elements.

To understanding the ultrafast RL radiation mechanism, we perform a transient 
absorption (TA) spectroscopy to measure the excited state of ZnO:Ga, of which the cor-
responding schematic diagram is displayed in Fig.  3(a). The energy band structure of 
ZnO:Ga single crystal is shown in Fig. 3(b). During the experiment, a Femtosecond laser 
at 360 nm with a pulse width of 120 fs is used to excite the sample, and then the rela-
tive changes of absorption of supercontinuum probe pulse from 390 to 600 nm after a 
certain decay time are recorded via Helios, a commercialized transient absorption spec-
trometer from Ultrafast System.

For the TA spectrum, the photon energy range absorbed by different processes is 
different, so the absorption peaks at different wavelength positions on the absorption 
spectrum with a fixed relaxation time can be distinguished. In the TA spectrum of 
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ZnO:Ga single crystal, the bleaching peak at 390 nm is due to the reduction of ground-
state particles due to bandgap transitions, shown in Fig.  3(c). In the whole spectral 
range (390, 400 and 415  nm), there are no other absorption peaks, which indicates 
that the doping of Ga into ZnO does not cause additional excited-state absorption and 
photoproduct absorption that delay the decay time. This is crucial for obtaining ultra-
fast fluorescence of ZnO:Ga single crystals. Then we extract three curves at different 
wavelengths from Fig.  3(c) and get them fitted with a single e exponential function, 
from which the decay time corresponding to 390, 400 and 415 nm is obtained as 23.7, 
19.4 and 17.7 ps respectively. On the basis of those results, the clean near-band-edge 
emission that verifed by the measured TA spectrum leads the ultrafast fluorescence of 
ZnO:Ga single crystals.

The radiation decay time is measured by a single-particle time-resolved emission spec-
troscopy (SP-TES) system, which has the advantage of avoiding distortion due to weak 
signals and having fast time response performance. The principle of the SP-TES system 
is briefly described in Fig. 4 inset. In order to obtain the spectral and temporal informa-
tion of ZnO:Ga near-band-edge luminescence at the same time, we added a monochro-
mator in front of the single-photon optical path, as shown in the illustration of Fig. 4. A 
single-photon counting technology is adopted to collect the luminous waveform every 
5 nm in the range of 380–700 nm, and the measurement result is shown in Fig. 4. By 
integrating time, the RL spectrum of ZnO:Ga wafer is shown in Fig.  2(b), where the 
emission peak is located at 394  nm. An obvious difference between the RL spectrum 
and the UV-PL spectrum can be observed. The wavelength corresponding photolumi-
nescence peak excited by 266 nm pulse laser is 380 nm, while that of radioluminescence 
peak excited by X-ray is 394 nm, which is originated from the strong self-absorption of 
ZnO:Ga single crystal. Since the interaction between 266 nm pulse laser and ZnO:Ga 

Fig. 4  Time-resolved emission spectrum of ZnO:Ga wafer. The illustration describes the diagram of 
measurement process
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wafer mainly focuses on surface, excited fluorescence is easy to escape from lattice, but 
the situation is different as the interaction between high-energy ray and the sample is 
concentrated in the interior of ZnO:Ga wafer due to the large penetration depth of high-
energy ray, which means the excited fluorescence has to pass through the sample to get 
emitted. In addition, there is a strong self-absorption for the near-band-edge radiation 
in ZnO:Ga single crystal, and the absorption coefficient increases significantly with the 
decrease of wavelength. In Fig. 4, the ZnO:Ga single crystal also shows a ultrafast RL 
with 3 ns decay time.

As well known, the ionizing radiation detection, including neutrons, alpha rays and 
X-rays, has important applications in medical diagnosis, high-energy physics and nuclear 
energy control. Among them, fast X-ray imaging is very important in the pulsed X-ray 
radiation field generated by radiation events such as high-temperature dense plasma, and 
it is also a technology that needs to be solved urgently. In this part, we discuss the perfor-
mance of ZnO:Ga crystal in X-ray imaging, the purpose is to verify the ability of ZnO:Ga 
crystal in X-ray imaging, combined with the fast luminescence of the crystal to illustrate 
its performance in the above-mentioned fast X-ray imaging application. The spatial reso-
lution of a scintillator is an important factor for realizing the dynamic imaging of ultra-
fast process as well as a pivotal index to evaluate the quality of high-energy ray imaging. 
Figure 5(a) is the schematic diagram of X-ray imaging system, where the imaging object 
is placed between the X-ray source and ZnO:Ga scintillator but close to the latter. Under 
X-ray irradiation, the fluorescence emitted from the unshielded ZnO:Ga wafer is received 
by the ultraviolet-enhanced camera through reflector. Here, we took a measurement of 
the spatial resolution of ZnO:Ga scintillator under different X-ray doses, during which 
the exposure time was 10 s, and the results are shown in Fig. 5(b) to (f ). Figure S8(a) is 
the optical photograph of that line pair test pattern, which distributes sawtooth with dif-
ferent densities in different areas. When the X-ray dose rate is 3.15  mGy/s, the radio-
graph spatial resolution of ZnO:Ga scintillator is 3.15 lp mm−1; and when the X-ray dose 
rate is up to 5.65 mGy/s, the radiograph spatial resolution of ZnO:Ga scintillator is 4.5 lp 
mm−1. We also extracted the RL intensity of region A and B at different X-ray dose rate, 
and results were present in Figure S8(b), where the RL intensity is nearly proportional to 
radiation dose rate. This conclusion is consistent with the rule in Figure S8(b), that with 
the decrease of X-ray dose, the RL intensity decreases linear. It is also clear that the detec-
tion limit is almost 3.15 mGy/s. Although ZnO:Ga is a kind of scintillator with low light 
yield, it still has a high spatial resolution under X-ray illumination with large dose rate. 
Figure S9 displays the X-ray imaging of integrated chip under the X-ray radiation dose 
rate of 29.13 mGy/s,14 where various details with its pins included can be clearly observed 
in the X-ray imaging. All the findings above prove that ZnO:Ga single crystal is an excel-
lent candidate scintillator to detect ultrafast dynamic process under large radiation doses.

Conclusions
In this work, we fabricate a high-quality ZnO:Ga single crystal with the diameter 
of 2 inches by hydrothermal method, and take a measurement on its RL spectrum 
where the RL peak is located at 394  nm. Besides, according to the time-resolved 
emission spectrum of ZnO:Ga single crystal, the ultrafast luminescent decay time 
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excited by alpha particles is obtained as 600  ps. The spatial resolution and ultra-
fast luminescence characteristics of ZnO:Ga single crystal under high-dose X-ray 
irradiation indicate that ZnO:Ga single crystal is a potential scintillator for ultrafast 
dynamic imaging.
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