
PhotoniXQian et al. PhotoniX            (2021) 2:21 
https://doi.org/10.1186/s43074-021-00043-z

REVIEW Open Access

Spontaneous emission in micro- or
nanophotonic structures
Zhiyuan Qian1, Lingxiao Shan1, Xinchen Zhang1, Qi Liu1,4, Yun Ma1, Qihuang Gong1,2,3,4,5

and Ying Gu1,2,3,4,5*

*Correspondence: ygu@pku.edu.cn
1State Key Laboratory for
Mesoscopic Physics, Department of
Physics, Peking University, Beijing,
China
2Frontiers Science Center for
Nano-optoelectronics, Collaborative
Innovation Center of Quantum
Matter, and Beijing Academy of
Quantum Information Sciences,
Peking University, Beijing, China
Full list of author information is
available at the end of the article

Abstract

Single-photon source in micro- or nanoscale is the basic building block of on-chip
quantum information and scalable quantum network. Enhanced spontaneous
emission based on cavity quantum electrodynamics (CQED) is one of the key principles
of realizing single-photon sources fabricated by micro- or nanophotonic cavities. Here
we mainly review the spontaneous emission of single emitters in micro- or
nanostructures, such as whispering gallery microcavities, photonic crystals, plasmon
nanostructures, metamaterials, and their hybrids. The researches have enriched
light-matter interaction as well as made great influence in single-photon source,
photonic circuit, and on-chip quantum information.
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Introduction
Single-photon source in micro- or nanoscale is the basic building block of on-chip quan-
tum information and scalable quantum network. Enhancement of spontaneous emission
(SE) in the frame of cavity quantum electrodynamics (CQED), i.e. Purcell effect control-
ling the spontaneous emission rate through cavity modes, is one of the key principles of
realizing single-photon sources [1]. With the trend of on-chip optical quantum devices,
realizing single photon emission in the micro- or nanoscale is increasingly important for
quantum information process. Local field enhancement or small optical mode volume in
micro- or nanostructures brings huge advantages in CQED, quantum information, and
light-matter interaction. So far, the enhancement of SE in the micro- or nanoscale has
reached great achievements in the areas of whispering gallery microcavities, photonic
crystals (PCs), surface plasmon polaritons (SPPs), metamaterials, and so on, which pro-
vides abundant choices and methods of controlling and collecting single photons. In this
Review, we will mainly focus on the theories, experiments, and up-to-date applications of
SE in above areas. These researches demonstrate that Purcell effect has great influence in
single-photon source, photonic circuit, and on-chip quantum information.
In the past decades, there were several excellent reviews related to the SE. For exam-

ples, Serge Haroche et al. used the concept of cavity quantum electrodynamics to review
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the SE in 1989 [2], but not any photonic structure was involved. K. J. Vahala pointed out
that optical microcavities confine light to small volumes by resonant recirculation which
provides an environment for SE [3]. After that, towards to integrated quantum devices,
there was a great achievement in this field. H. J. Kimble predicted that quantum nodes
in quantum networks can be realized by the optical interactions of single photons and
atoms in traditional CQED cavities [4]. In the last ten years, more and more researchers
recognized the importance of quantum plasmonics and its applications in quantum infor-
mation processing [5–7]. However, an updated version of reviewing the SE in micro-
or nanophotonic structures is required, including not only the theoretical and practical
knowledge accumulated over the past decades, but also the up-to-date applications and
development trend of CQED system in the micro- or nanoscale, which is our intention of
writing this review.
To quantitatively describe the enhancement of SE, Purcell factor F is defined as F =

γtot/γ0, where γtot is the total SE rate from micro- or nanostructures and γ0 in vacuum.
According to Purcell theory, F ∝ Q/V with V ∼ L3, that is, larger Purcell enhancement
requires larger quality factor Q and smaller optical mode size L, which can be provided
by various micro- or nanostructures. As shown in Table 1, Q and L for traditional CQED
systems are usually less than 103 and 0.5 mm, respectively, thus the Purcell factor F is in
the order of 102 [2, 3, 8]. With the larger Q (104 ∼ 109) and smaller L (10 ∼ 100 μm),
Purcell factors in whispering gallery microcavities can reach to 105 [9–11]. By creating
PC defect cavities, L continues to get smaller to less than 10 μm, but Q is limited in
103 ∼ 105 due to the transport loss, so Purcell factors are usually less than 102 [12–
15]. In SPP structures, the scale of L can even be smaller than 1μm which is often in
subwavelength scale and always leads to local field enhancement, but Q is less than 102

because of absorbtion loss, thus Purcell factors can be up to 104 but with large absorption
part [16–20]. Additionally, we also reviewed the photon emission in metamaterials and
hybrid structures.
The rest of this Review is organized as follows: to ensure the completeness of the paper,

in “A brief review of CQED” section, we briefly introduced the concept and developments
of traditional CQED; Then in “The development of spontaneous emission in micro- or
nanostructures” section, we summarized the theories, experiments, and applications of
the spontaneous emission in various micro- or nanostructures, mainly including whis-
pering gallery microcavities, photonic crystals, plasmon nanostructures, metamaterials,

Table 1 Schematic, mode size L, quality factor Q, and Purcell factors F = γtot/γ0 for traditional CQED
systems [2, 3, 8], WGMs [9–11], PCs [12–15], and SPP structures [16–20]
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and their hybrid structures; Finally, in “Summary and prospects” section, there were the
summary and prospects.

A brief review of CQED
Cavity quantum electrodynamics focuses on the interaction between quantized field and
quantum emitter at a single-quantum level in the limited space as well as cavities. The
study of CQED started from Purcell’s discovery in 1946 [1] that the spontaneous emis-
sion can be enhanced or inhibited by the surrounding environment. In 1963, Jaynes and
Cummings [21, 22] set up the interaction between single-mode electromagnetic field and
two-level atom, which is now known as Jaynes-Cummings model. In 1983, Goy’s group
used Rydberg Na atoms to increase the rate of spontaneous emission by about 50 times
[23]. Later, Hulet’s group achieved suppressed spontaneous emission of Rydberg Cs atoms
experimentally [24]. At the end of 1980s, the theory of weak coupling regime of cavity
quantum electrodynamics had been in-depth researched [2]. Owing to the improvement
of micro- or nanocavity technology [25], strong interactions of single atoms and photons
in CQED attracted much attention from quantum entanglement and cold atoms [26–30],
which was decades later than weak coupling because of its rigorous conditions. In 1996,
Serge Haroche finished the first proof of interaction between single two-level atom and
single photon in the cavity [31], and thus became a Nobel laureate in 2012 [32]. Since
then, strong and weak coupling regimes have been both key components of CQED [3, 4,
33–35].
Light trapped in the cavity can only form resonance at some specific eigenfrequencies,

i.e., discrete cavity modes, leading to interesting behavior between cavity and emitter [2,
35–42]. Using Jaynes-Cummings model [21, 22] with single-mode cavity and two-level
emitter [Figs. 1(a-f )], the Hamiltonian and dynamical equations are described as [43, 44]

H = �ωaσ
†σ + �ωca†a + �g

(
σ †a + σa†

)
, (1)

ρ̇ = −(i/�)[H , ρ]−(γ /2)
(
σ †σρ − σρσ † + H .c.

)

−(κ/2)
(
a†aρ − aρa† + H .c.

)
. (2)

where σ †(σ ) is the rising (lowering) operator of the emitter, a†(a) is the creation (anni-
hilation) operator of the mode of nanocavity, and ωa(ωc) is the frequency of the emitter
(nanocavity). This CQED system is governed by three photonic processes [5, 7, 20, 26,
44, 45], characterized as parameters g, κ , and γ , where g donates the coupling coeffi-
cient between emitter and cavity mode, κ describes the dissipative channel from cavity to
the thermal reservoir, and γ describes the dissipative channel from emitter to the modes
other than nanocavity mode. Two typical regimes are distinguished as weak coupling
regime (g � γ , κ) [Figs. 1(c, d)] and strong coupling regime (g � γ , κ) [Figs. 1(c, e)].
When talking about weak coupling regime, because g � γ , κ , the energy exchanging

strength between quantum emitter and cavity is much less than the loss rates of system,
so most photons decay into the environment. The SE rate of quantum systems can be
controlled by cavity mode and other modes out of cavity, which is so-called Purcell effect.
Its emission enhancement is defined as Purcell factor [3, 5, 7]

F = γ

γ0
= 3

4π2

(
λ

n

)3 Q
V
. (3)
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Fig. 1 Schematic diagram of CQED systems. a A typical CQED system consisting of a single quantum emitter
(here is two level) and a cavity with coupling coefficient g, cavity loss κ , and spontaneous emission rate γ [7].
b The probability of excited-state with time evolution and c transmission spectrum for weak (red curve) and
strong (blue curve) coupling regimes [5]. d Schematic diagram of Purcell enhancement at weak coupling
regime [3]. e Vacuum Rabi oscillation with period energy exchange at strong coupling regime [3]. f
Schematic of Rabi splitting energy by dressed state theory [7]

which is proportional to quality factors Q and inverse proportional to cavity mode vol-
ume V. For any resonant optical cavity, the Q factor is defined as Q = 2π (energy
stored)/(energy lost in one cycle of oscillation) [46], thus Q is inversely proportional to κ ,
which is much important for enhancement of SE inmicro- or nanophotonic devices. Also,
considering cavities may be open, cavity mode volume V is an effective volume. Micro- or
nanophotonic structures with small mode volume and highQ could lead to huge enhance-
ment of SE of quantum emitter due to F ∝ Q/V [5, 6]. γ0 represents the spontaneous
emission in vacuum, which can be obtained fromWeisskopf-Wigner theory [47]:

γ0 = 1
4πε0

4ω3
aμ

2

3�c3
(4)

where μ is the dipole moment of quantum emitter.
While for strong coupling regime, i.e., g � κ , γ , the energy exchanging strength

between quantum emitter and cavity mode is much larger than the loss rate of the system.
The coupling coefficient g is described as

g = �E · �μ
�

= μ

√
ωc

2�εV
(5)

where �E is the electric field corresponding to a single excitation and ε means the environ-
mental permittivity. The coupling coefficient g ∝ Q/

√
V [5, 7]. The Rabi splitting caused

by strong coupling can be explained by the dressed state theory [48] and in the resonant
condition it is

ER = 2
√
g2 − (κ − γ )2/16. (6)

If g is much larger than |(κ − γ )/4|, Rabi splitting is close to 2g [Fig. 1(f )].
Spontaneous emission of quantum emitters of CQED is quite important for realizing

single photon sources. Rydberg atoms [22, 49, 50] and quantum dots [51] are two kinds of
technologic realization of single-photon sources owing to the large dipole moments. Also,
quantum dots are popularly applied in Purcell experiments with different functionalities
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caused by various ingredients [52–55]. For example, InAs quantum dot embedding in
GaAsmaterials can provide broadband spontaneous emission control with high efficiency
[56–58], while entangled photon pair sources show high brightness and indistinguisha-
bility by combining GaAs quantum dots with new broadband photonic nanostructures
[59].
The large enhancement of spontaneous emission makes CQED systems elemental in

the field of quantum network, which plays an important role in the broad context of
quantum information [4]. In the localized quantum nodes, the quantum state is gener-
ated, processed and stored in the setting of CQED. And quantum states are transported
through quantum channels from site to site with high fidelity. Such quantum networks
can be achieved by single photons and atoms provided by CQED systems [4, 36, 60, 61].

The development of spontaneous emission inmicro- or nanostructures
According to Purcell’s theory, the SE of quantum emitters is controlled by the optical
modes of the cavity [1]. To engineer the optical modes in the micro- or nanoscale, peo-
ple fabricate various micro- or nanostructures, such as nanofiber [62, 63], metal-coated
nanostructure [64, 65], erbium dopants in a cryogenic resonator [66], cold atoms in
microcavity [27–30], and so on. Some of them possess unique nature, like superradi-
ance for atoms [67] and quantum state controlled emission [68]. Nowadays, traditional
CQED study starts to combine with micro- or nanophotonics. Here we mainly focus on
the spontaneous emission in whispering gallery microcavities, PCs, plasmonic structures,
metamaterials, and hybrid photonic structures.

Spontaneous emission in whispering gallery microcavities

Whispering gallery modes (WGMs) are optical modes in which light is confined by con-
tinuous total internal reflection in microcavities with circular symmetry [Figs. 2(a, b)]
[69–72]. The study of WGMs started from the research of acoustic wave propagation
phenomena in the dome of St Paul’s Cathedral in 1910 [73], where one could always hear
the whisper of the others at anywhere of the gallery if they all stood near the wall. Since
then, electromagnetic WGM microcavities with various shapes were found [74], such as
spheres, pillars, disks, and toroids [69]. For a typical 2D WGM microcavity, light propa-
gates in a circular pattern along the cavity wall, so only those modes satisfyingmλ = neL
can be self-reinforced, while others are eliminated [Figs. 2(c, d)]. Here, m is an integer
angular mode number, λ is the vacuum wavelength, ne is the effective refractive index,
and L is the circumference of the microcavity. Some characteristics of WGMs have also
been observed, like radiation pressure enhancement effect [75] and structure resonances
[76]. The first WGM laser was realized in 1961 [77], and then low-threshold version was
developed for integrated optical chip in 1991 [78].
Compared with traditional Fabry-Perot cavities, WGMmicrocavities have higher qual-

ity factorQ, smallermode volumeV, longer photon lifetime, and larger optical density [69,
71, 79–82]. For example,WGMs of silica microsphere provideQ of∼ 109 and small mode
volume [79]. Normally, quality factors Q of microcavities are not affected by emitters.
However, in cases of emitters with large size, emitters’ permittivity makes influence in
optical mode of cavities, which leads to the change of quality factorsQ [69, 83]. According
to Eq. (3), higher quality factor Q and smaller mode volume V lead to larger Purcell fac-
tor. Therefore, enhanced spontaneous emission can be easily realized in WGM cavities
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Fig. 2 The basic concepts of WGMs. a Schematic of WGM toroid microcavity [3]. b Schematic of
self-reinforced light by total internal reflection [69]. c The typical electric field distribution of WGM in a
microsphere [70]. d The radial field distribution of mode shown in (c) [70]. The x-axis in (d) represents radius
distance from center, and the unit is μm

[10, 80]. For the applications in single photon sources [3, 84–88], we concentrate on
several typical structures consisting of WGMs and quantum emitters [3, 10, 11, 89–93].
The first experiment of spontaneous emission of single quantum dot in microdisk was

realized in 2000, with the Purcell factor about 6 [10, 84] [Figs. 3(a, b)]. Owing to the
strong temperature dependence of single-exciton resonance of the quantum dot, energy
from quantum dot to WGMs could be controlled. Same phenomenon was also demon-
strated in microsphere cavity [89] [Figs. 3(c, d)]. Spontaneous emission suppression was
later demonstrated in similar structures using metal sidewall coatings [90]. In order to
measure the spontaneous emission ofWGM structures, in 2003, Vahala’s group proposed
fiber-taper coupling to high-Q microspheres [92]. Using a combination of lithography,
dry etching and a selective reflow process, they achieved Purcell factor to 105 in on-chip
silica toroid-shaped microresonators [Fig. 3(e)] with ultrahigh Q/V [Fig. 3(f )] [11, 91]. In
addition, strong coupling behavior in WGM cavities has also been well developed, where
periodical energy exchanging between WGM and emitter leads to Rabi splitting [94–97].
Single photon source is one of the most important applications of the Purcell effect in

microcavities [98]. The pioneering work of single photon source was done in 2000 by A.
Kiraz et al. [84]. By using WGM cavity with the zero-phonon line of nitrogen-vacancy
(NV) center, Purcell factor of 12 could be reached, with 25% zero-phonon line emission
of diamond [88]. Therefore, by enhancing spontaneous emission and collecting single
photons, WGM microcavities can realize an efficient integrable single photon source.



Qian et al. PhotoniX            (2021) 2:21 Page 7 of 35

Fig. 3 SE based on WGM structures. a The microdisk structure containing a single InAs quantum dot [84]. b
Enhancement of spontaneous emission when WGM and exciton are on resonance [10]. c A glass
microsphere doped with CdSe nanocrystals in a thin surface shell [89]. d The radiative lifetime of CdSe
quantum dots with and without WGM structure [89]. e A high Q/V toroid microcavity on a chip [11]. f
Measured Q/V ratio of toroid microcavities by varying principal diameter D [11]

Besides single photon sources, spontaneous emission of WGMs has also been applied in
single-photon transport [99], quantummany-body simulation [100], and quantum gate [101].

Spontaneous emission in photonic crystals (PCs)

Introduction to PCs

Photonic crystals impose periodic modulation on the refractive index in the scale of
wavelengths [Figs. 4(a, b)], allowing Bloch modes for photons similar with electrons in
crystal lattices [106]. In the reciprocal space, Bloch modes form photonic band diagrams
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Fig. 4 The basic concepts of PCs. a A schematic diagram of a 2D PC slab [102]. b A schematic diagram of 3D
PC [103]. c A photonic band diagram of a 2D PC slab [104]. d The electric field in a L3 cavity by shifting the
holes at the cavity edges [12]. e The electric field of a double heterostructure PC waveguide [105]

while the frequency range without Bloch modes is called the photonic band gap (PBG)
[Fig. 4(c)]. Thus, undesired radiation can be suppressed in the PBG by the deliberate
design of PCs [107, 108]. The ability of radiation suppression differs in various PC struc-
tures [102, 104]. Only the PBG in 3D PCs can be complete [103], where optical modes
are prohibited in all wavevectors and polarizations. With easier fabrication for on-chip
devices, 2D PCs show higher potentials in applications despite of incomplete band gap.
Defect modes in the PBG [109, 110] are commonly utilized as optical microcavities,

which can be introduced by removing lattice units [109, 111] and changing size or refrac-
tive index [112]. These modes possess narrow linewidths due to the suppression of
other undesired modes, where electric field is confined in the subwavelength scale [3].
PC microcavities usually possess 103 ∼ 105 of Q-factors and moderate V (∼ (λ/n)3)
[12, 112–119]. The most common design of photonic crystal microcavity is L3 PC micro-
cavity [Fig. 4(d)], which is produced by removing 3 holes along a row of hexagonal
lattices and changing the geometry of several neighbouring holes. Such design avoids the
abrupt change at the edge of the microcavity that undesired scattering can be suppressed
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[12, 120–122]. Another scheme of defect modes is to remove the entire row of hexag-
onal lattices, called W1 defect waveguide [123], which allows light propagation in the
line defect. Quality factor Q can be further improved by special modification of PC
structures [13], especially in double-heterostructure nanocavity [Fig. 4(e)] with Q ∼
6×105[105]. Thus, the PCmicrocavity with highQ and smallV enables the enhancement
of spontaneous emission.
PC structures can be fabricated by up-to-date nanotechnologies. Due to the difficulty

of the 3D nanofabrication, 2D PCs have occupied the most attention [15, 124, 125]. To
optimize the radiation effect in defect modes, the frequency and spatial position of emit-
ters should be accurately determined. The frequency between cavity and emitters should
match, which can be realized by tuning temperature [126], inert gas [127] and electric field
[128]. The spatial position of emitters requires positioning technology [5, 129–131]. The
DNA origami technology provides an effective way with accurate positioning of 10-nm
solution [132].
In recent years, some novel PCs with unique optical dispersion relationship have

been developed, such as index-near-zero materials [133] and Dirac/Weyl-type PCs [134–
137], which are different from bandgap PCs. These PCs with new characteristics, like
long-range dipole-dipole interactions [135, 136], may lead to more interesting results of
spontaneous emission.

Spontaneous emission in PCs

When considering emitters in PC structures, PBGs and defect modes play an important
role in modulating spontaneous emission [104]. With the state-of-art nanotechnology,
various components have been introduced into PC structures for enhanced localized den-
sity of states (LDOS), such as metal [14, 138], silicon nitride [139], gallium phosphide
[140], organic materials [141], and two-dimensional materials [142–144]. When emitter
is on resonance with defect modes, the high LDOS results in the emission enhancement.
Among 2D PC structures, defect square-lattices cavity [15] and PC waveguides [145] can
support Purcell enhancement. For 3D PCs, spontaneous emission could be controlled in
the infrared region [146, 147]. While emission frequency falls in the photonic band gap,
the density of states is lower than that in vacuum, leading to the suppressed emission.
The emission could be suppressed in the 3D multilayer ‘woodpile’ structure [111] and
enhanced in the 3D ‘inverse woodpile’ structure with two-fold Purcell factor [147]. Some
characteristics of PC may help control spontaneous emission, such as slow light [148–
151], Fano resonance [152–158], and quasicrystals [159–161].
The Purcell enhancement can be realized easily in PC defect cavities. In the defect cav-

ity of square lattices [15], Purcell factor reached 76 and the delay time after the pump in
laser response was cut down to a few picoseconds. Thus the early work of single photon
sources in PC was conducted in the inverse opal 3D PCs with 5-fold Purcell enhancement
[Figs. 5(a, b)] [162]. The Purcell effect also provides possibilities for tailoring polarization
by air holes of PC defects [164–166]. The single photon emission with linear polariza-
tion was achieved in the point defect by designing a PBG only for transverse-electric-like
modes [125].
Compared to defect cavities, PC waveguides have the advantage in the high coupling

efficiency [163, 167, 168]. Emitted photons can be coupled into the waveguide mode,
especially one-way PC waveguide [Figs. 5(c, d)] supporting unidirectional light emission.
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Fig. 5 Spontaneous emission enhancement in PC structures. a The SEM structure image of the inverse opal
3D PCs [162]. bMeasured decay rates of the excited states in the inverse opal 3D PCs with different lattice
parameters [162]. c Illustration of a single photon source based on a one-way PC waveguide [163]. d Effective
decay rate with different positions in the structure (c) [163]

Also, the ‘spin-moment locking’ mechanism enables unidirectional transmission [169–
171]. The enhanced photons emitted from circularly polarized emitter can stimulate the
specific transverse spin momentum to achieve the unidirectional transmission [148].
With the increase ofQ values of PCmicrocavities, the interaction between defectmodes

and the emitters goes into the strong coupling regime i.e., g > κ , γ [12]. In the PC cavities
with point defect, Rabi splitting has been observed [126, 129, 172]. Strongly coupled light-
matter systems provide anharmonic energy structure that allows photon blockade [7],
which can be used in various PC microcavities for single photon sources [173–178].

Spontaneous emission of single emitters in plasmon structures

Introduction to surface plasmon polaritons (SPPs)

The history of surface plasmon polariton (SPP) can be traced back to 1900s [179–181].
Since then, mathematical description of the surface waves had been established and loss
phenomena of metallic surfaces had been recorded [182–184]. The researches focus-
ing on the trivial surface modes and related phenomenon were reviewed by H. Raether
et al [185]. Then the sandwich-like metallic structures with symmetric and asymmet-
ric SPP modes were studied [186, 187]. Also, more localized field enhancement nearby
various metallic nanoparticles was investigated in the micro- or nanoscale [17, 18, 188–
192]. As shown in Fig. 6, two classes of SPPs, i.e., localized SPPs supported by a metallic
nanoparticle [Fig. 6(a)] and SPPs propagating along the interface [Fig. 6(d)] are introduced
[5, 188].



Qian et al. PhotoniX            (2021) 2:21 Page 11 of 35

Fig. 6 SPP basics. a Schematic diagram of plasmon oscillation for a sphere [192]. b Electric field contours and
c Extinction efficiency of dipole mode of a silver nanosphere with r = 30 nm [192]. d Schematic diagram of
SPP wave at a metal-dielectric interface [17]. e The field decaying exponentially with δm in the metal and δd in
the dielectric for SPP waves [17]

The localized SPPs of metallic spheres can be obtained from Mie’s theory [188, 193,
194]. For a small enough metal sphere, i.e., R � λ, only dipole resonance is considered
and its extinction cross section is described as [193, 194]

σext(ω) = 9
ω

c
ε
3/2
d V0

ε
′′
m(ω)[

ε
′
m(ω) + 2εd

]2 + ε
′′
m(ω)

2 , (7)

where V0 = (4π/3)R3 denotes the particle volume, εd is the embedding dielectric per-
mittivity, and εm(ω) = ε

′
m(ω) + iε ′′

m(ω) is the metal permittivity. The dipole resonance
occurs at ε

′
m = −2εd, which is independent on the radius of metallic sphere. Also,

more higher-order resonances can appear when the metallic sphere becomes larger [194].
Besides nanosphere, other nanoparticles such as nanorods have the similar results [195].
When localized SPP happens, most electromagnetic energy concentrates near the metal-
lic nanoparticle [5], namely, it has very small optical mode volume V [Fig. 6(b)]. Though
the quality factor Q is not very high [Fig. 6(c)], it will enhance the light-matter interaction
with the principles of CQED.
While for the SPP propagating along the metallic and dielectric surface, its dispersion

relation is [17, 18, 185, 186, 188]
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ksp = k0
√

εdεm
εd + εm

, (8)

where εd and εm = ε
′
m + iε ′′

m are the dielectric and metallic permittivity respectively. ksp
is the complex surface plasmon wavevector, i.e., ksp = k′

sp + ik′′
sp with

k
′
sp = k0

√
εdε

′
m

εd + ε
′
m
, (9)

k
′′
sp = k0

(
εdε

′
m

εd + ε
′
m

)3/2
ε

′′
m

2ε ′
m
2 . (10)

This dispersion relation shows that the light cannot couple with the SPP directly because
ksp > k0 for the same frequency ω [17]. The kz in metal or dielectric medium is imag-
inary, so the field in this perpendicular direction is evanescent [Fig. 6(e)] as zd and zm
respectively [185]

zd = λ

2π

√
ε

′
m + εd
εd2

, (11)

zm = λ

2π

√
ε

′
m + εd

ε
′
m
2 . (12)

For examples, when λ = 600 nm, one obtains for silver [196] zm = 23 nm and zd = 371
nm, and for gold [196] zm = 29 nm and zd = 281 nm. Thus SPP is localized at the inter-
face betweenmetal and dielectric and decays exponentially [189], which causes ultrasmall
optical mode volume V and can be applied to the spontaneous emission enhancement.
The propagation length of SPP can be found from the imaginary part of wavevector

[17],

δsp = 1
2k′′

sp
= 1

k0

(
ε

′
m + εd
ε

′
mεd

)3/2
ε

′
m
2

ε
′′
m

. (13)

For silver in visible spectrum, δsp ranges from 10 to 100 μm, and in near-infrared telecom
spectrum δsp can reach 1 mm [17]. This propagation length is enough to support SPP
waves in well-designed subwavelength photonic devices [190, 197]. Finally, as shown in
Fig. 6(d), SPPs only exist for TM polarization [18, 191]. All above characteristics of SPP
are based on single flat interface between a dielectric and metallic medium, but the same
characteristics are also found in multilayer plasmon nanostructures [18, 187].
Modern nanofabrication technology especially chemical synthetic technology [198,

199], makes it possible to fabricate plasmonic structures. Localized SPPs have been
proven by the synthesis of nanoparticles like nanobars, nanorice, and nanorods [198, 200,
201]. SPP waves in waveguides with various shapes such as nanoscale metallic cylindri-
cal cable [202] and metal-insulator-metal structure [203] have also been studied. Hybrid
integration of nanowires makes the propagation length of SPPs enough to function in
the subwavelength photonics [197, 199, 204, 205]. Dark plasmons in metallic nanoparti-
cles excited by localized emitter allows for subwavelength guiding of optical energy with
almost no radiative losses [206]. The interaction between semiconductor and metallic
nanoparticles has been studied, which brings unique nonlinear Fano effect [207, 208].
Theory of quantum optics with surface plasmons has also been constructed [209] , which
opens the way to the later studies of plasmon CQED and on-chip quantum information.
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Additionally, new types of lasers based on SPPs have been developed greatly, named as
spasers [210].
SPPs have been widely applicated in plasmonic sensors [186, 211, 212], surface-

enhanced Raman scattering [213], and photothermal and magnetooptic effects [214,
215]. Electromagnetic field enhancement induced by SPPs makes quantum effects eas-
ier to observe and control on the chip, such as on-chip quantum interference [216],
quantum entanglement [217], quantum dot integration [218], and quantum coherence
enhancement [219].

Spontaneous emission based on SPP structures

Nowadays, plasmonic devices contribute a lot on strong and weak coupling systems of
CQED by providing ultrasmall optical mode volume to enhance light-matter interac-
tion [5–7, 220, 221]. According to localization properties of optical field, we roughly
divided the studies of plasmonic CQED into three categories, i.e., localized SPP-based
CQED, SPP-based CQED, and gap-plasmon-based CQED. The typical localized SPP-
based CQED system [Fig. 7(a)] is composed of a single emitter like excited molecule or
quantum dot, and a metal nanoparticle such as nanorod, nanosphere, or nanocube. The
total decay rate γtot of a single emitter is obtained by considering two channels, one is the
radiative loss γrad emitting to the free space, the other is the nonradiative decay γabs origi-
nating fromOhmic loss inside the metal nanoparticle, i.e., γtot = γrad +γabs. Accordingly,
the total, radiative, and nonradiative Purcell factors are obtained by γtot/γ0, γrad/γ0 and
γabs/γ0, respectively. γ0 represents the spontaneous emission in vacuum. The total Purcell
factor of localized SPP system usually ranges from 100 to 104 according to the distance
between the emitter and plasmon structure [222].
The spontaneous emission of an excited molecule as emitter near a small metal

sphere was calculated in the early 1980s [225]. The lifetime of an emitter near metal
sphere decreases as emitter approaches the sphere because of nonradiative part γabs.
Also, oscillations in the lifetime occur even at separations of a few wavelengths, which
means localized SPP is excited. So far, with the help of advanced microscope tech-
nology [Fig. 7(b)], the enhancement and quenching of emitter fluorescence coupling
to noble metal nanoparticle have been investigated [195, 223, 226–228]. In practi-
cal researches, quantum yield qa = γrad/γtot is the radio of radiative decay rate and
represents the emission probability. The decrease of quantum yield means quench-
ing of spontaneous emission. The local field enhancement of nanoparticle at localized
SPP mode leads to an increased excitation rate whereas nonradiative energy transfer
to the particle leads to a decrease of the quantum yield, which shows either fluores-
cence enhancement or quenching [Fig. 7(c)]. Moreover, the continuous transition from
enhancement to quenching was demonstrated with tuning the distance between emit-
ter and nanoparticle [223]. Besides nanospheres, other shapes of particles like nanorods
[195], nanorice [198], and nanodisks [229] also provide spontaneous emission enhance-
ment based on localized SPP. To obtain the Purcell factors near the plasmon structures,
people have developed various methods, including semiclassical theory [222], Green-
function [223, 230], first-principles [8], and the commercial softwares of FDTD and
FEM [20].
In SPPs, evanescent waves decay exponentially perpendicular to the surface, which

makes the electromagnetic modes compressed nearby the surface, thus enhances the
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Fig. 7 Spontaneous emission based on SPP structures. a Schematic diagram of localized SPP-based CQED
system [222]. b Sketch of the experimental arrangement with SEM image of a gold nanoparticle [223]. c
Fluorescence image of particle-emitter interaction with dip in the center indicating quenching [223]. d
Schematic diagram of SPP-based CQED system [224]. e Purcell factor (solid curve) and efficiency of emission
into surface plasmons (dashed curve) with different size of wires [224]. f Second-order correlation function
g(2)(τ ) of quantum dot fluorescence using SPP-CQED system [224]

light-matter interaction. The typical SPP-based CQED system [Fig. 7(d)] is usually com-
posed of a single emitter and an one-dimension plasmonic nanowire or two-dimension
plasmonic nanofilm. In this case, the total decay rates γtot includes three parts, first is
the radiative loss γrad emitting to the free space, second is effective part γev that guided
into the SPP through the whole waveguide, third is the Ohmic loss γabs into the SPP
waveguide. Accordingly, the total, radiative, nonradiative, and effective Purcell factors are
obtained by γtot/γ0, γrad/γ0, γabs/γ0, and γev/γ0, respectively. Purcell factor of these SPP-
based CQED systems is around 100 ∼ 101 [224, 231, 232], which is usually smaller than
that of localized SPP-based CQED system.
In 2007, the research showed the generation of single plasmons in silver nanowires

coupled to quantum dots [224]. When a single emitter is optically excited in proxim-
ity to a silver nanowire, emission photons couple directly to guided surface plasmons in
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the nanowire, causing the wire’s end to light up [Fig. 7(d)]. The emitter-SPP coupling is
stronger for thinner wires, while the out-coupling efficiency of SPP decreases for thin-
ner wires [Fig. 7(e)]. Thus it’s important to choose suitable size of nanowires to keep the
balance between the decay rate and collection efficiency. By observing second-order cor-
relation function g(2)(τ ) of quantum dot fluorescence [Fig. 7(f )], it’s demonstrated that the
light emission at the nanowire end is a single quantized surface plasmon [231, 232]. Con-
sidering the 2.5 ∼ 10 folds of Purcell enhancement [Fig. 7(e)], SPP-based CQED system at
weak coupling regime is a good candidate for single-photon source. Meanwhile, the life-
time of exciton is shortened and the broadband nature of coupling is also demonstrated.
Furthermore, the SPP waveguides can act as a planar dielectric antenna if multilayer
(three layers or more) plasmon structures instead of simple nanowires or nanofilms are
used. When placing emitters into their middle layer, the photon collection efficiency at
the vertical direction almost approaches to 100% [233, 234], which can be used to realize
a deterministic single-photon source. Therefore, with the advantage of efficiently collect-
ing single photons, SPP-based CQED systems are quite useful in single-photon source,
long-range optical coupling of quantum bits, and so on.

Spontaneous emission based on gap SPP structures

Gap plasmons exist in the nanoscale gap between two plasmon structures [Figs. 8(a, c,
e, h, j)]. Thanks to the nanofabrication techniques [235], researchers have fabricated and
investigated various plasmon structures with nanoscale gaps, such as double metal parti-
cles [16, 236–238], double SPP waveguides [239, 240], and metal particles with plasmonic
waveguide [20, 45, 241–244]. In these structures, dramatic enhancement of SE is obtained
due to more ultrasmall optical volume in the nanoscale gap.
The typical bowtie nanoantenna [Fig. 8(a)] is composed of two nearby metallic nanotri-

angles and a single emitter such as a molecule within the gap [16, 236]. An enhancement
or quenching of the photon emission relies not only on the local-field factor and the quan-
tum yield, but also on the excitation and emission spectra of the emitter [236]. Smaller
gap of a metallic bowtie nanoantenna brings stronger local-field factor and less quan-
tum yield. When a bowtie antenna is excited at the localized SPP frequency, light is
focused to a hotspot within the gap, leading to a strong enhancement of the SE. Also, the
bowtie antenna can function as a low-pass filter for emitter. In the experiment, by using
gold bowtie and a single fluorescent molecule with low quantum efficiency, enhancement
up to a factor of 1340 is observed [Fig. 8(b)], showing great potential for high-contrast
selection of single nanoemitters [16]. Similarly, other nanoantennas of two metal parti-
cles like metal double-spheres [237] or metal double-rods [238] with nanoscale gap, also
provide localized gap plasmons which can be applied for large enhancement of the SE.
Large SE enhancement can also occur in the nanogap between two plasmon waveg-

uides, where the emitted photons can couple into guided SPPs. One example is the
nonresonant enhancement of spontaneous emission in metal-dielectric-metal (MDM)
slab waveguide structures [Fig. 8(c)] [240, 247]. Because of tight confinement of electric
fields within the gap, these structures show the strong emission enhancement with fac-
tor of 101 ∼ 102 [Fig. 8(d)] with almost 100% coupling efficiency to plasmon waveguides.
Asymmetric gap waveguide, composed of a silver nanowire and a silver substrate sepa-
rated by nanoscale dielectric bilayer of Al2O3 embedding the fluorescent dyes Alq3 [245],
is also investigated [Fig. 8(e)]. This structure with strong field confinement within the
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Fig. 8 SE enhancement based on gap SPP structures. a Schematic of gold bowtie nanoantenna with
molecules (black arrows) as emitters [16]. b Radiative (red) and nonradiative (green) enhancement factors of
structure (a) along the center of the gap [16]. c Schematic of metal-dielectric-metal (MDM) gap plasmon slab
structure [240]. d Spontaneous emission enhancement for a MDM structure with different gap sizes [240]. e
Schematic diagram of gap-plasmon-based CQED system [245]. f Time-resolved fluorescence measurements
for the structure (e)[245]. g Decay rate for the structure (e) with different photonic channels [245]. h
Schematic of a silver nanocube situated on a gold film [246]. i Distribution of enhancement of spontaneous
emission rate for the structure (h) [246]. j Schematic diagram of silver nanorod-coupled gold nanofilm gap
plasmon system with a designed nanofiber [20]. k Purcell factors for different emission paths for the structure
(j) with emitter within the nano gap [20]



Qian et al. PhotoniX            (2021) 2:21 Page 17 of 35

gap can be seen as the nanocavity containing coupled emitters. The time evolution of the
emission intensity is also greatly modified on or off resonance to the cavity [Fig. 8(f )]. As
shown in Fig. 8(g), smaller gap brings stronger photon emission. The Purcell factor can
even approach to 103 when the emitters are placed within the nanogap [245].
Nanocavity consisting of metallic nanoparticles and plasmonic waveguide will be ultra-

small enough to exploremore properties of CQED system including both weak and strong
coupling regime due to the existence of the gap plasmon. Plenty of researches showed
that these nanogaps structures can overcome the challenges of directional emission,
room-temperature, broadband operation, high radiative quantum efficiency, and a large
spontaneous emission rate [229, 246, 248–250]. By a film-coupled metal nanocube sys-
tem with emitters embedded in the dielectric gap [Fig. 8(h)], SE enhancement can exceed
103 [Fig. 8(i)] with high quantum efficiency (> 50%) and collection efficiency (84%) [246].
This work proves that smaller gap size brings stronger Purcell enhancement with maxi-
mum factor ∼ 2 × 103. Moreover, the longitudinal and transverse modes of film-coupled
metal nanoparticle system are revealed to collect the emission photons [248]. For col-
lecting and guiding the enhanced photons directly into the on-chip optical circuits in the
nanoscale, metallic nanorod-coupled nanofilm structures coupled to a low-loss dielectric
nanofiber are designed [Fig. 8(j)] [20]. Purcell factors of all these channels are shown in
Fig. 8(k), with the order of magnitude 103. Based on this design, by tuning the permittivity
of the environment via liquid crystal, high-contrast switching of the spontaneous emis-
sion can be achieved, companying with high-efficiency extraction of the emitting photons
[251]. To overcome high optical loss in the metal, some nanogaps between the dielectric
and metallic structures are developed [252, 253]. These kind of devices with high quan-
tum efficiency promise an important impact on various fundamental and applied research
fields, including photophysics, ultrafast plasmonics, bright single-photon sources, and
Raman spectroscopy.

Plasmonic nanolasers & strong coupling

Plasmonic nanolaser is one of the key components for on-chip optical information sys-
tems based on SPP combining with simulated emission. Highly localized plasmonic mode
allows lasers to work in the subwavelength scale [254–258]. Under the Purcell enhance-
ment, lifetime of emitted photons is changed in well-designed nanocavity, enabling
ultrafast responses of nanolasers [259]. In particular, spaser is one type of nanolasers,
which can directly generate stimulated emission of quantized surface plasmons [7, 259].
The principle of spaser was proposed in 2003 [260], but the large absorption in metal
prevented its realization. Until 2009, the first spaser-based nanolaser overcoming loss
was demonstrated [261]. Soon the dark emission of spasers was revealed [262]. So far,
ultralow-threshold plasmonic lasers under continuous-wave pumping at room tempera-
ture have been realized [263–265]. Overall, plasmonic nanolasers have great potential in
circuits, sensors, superresolution imaging and quantum information, especially chemical
and biological nanoscopic sensors [254, 259, 262, 266].
Surface plasmon combining with strong coupling regime of CQED also reaches great

achievements. Different from cold-atom studies [26, 30], researchers can explore strong
plasmon-exciton coupling based on plasmonics at room temperature [19, 267–274],
which requires ultrasmall optical mode volume. In practice, it’s hard to reach g � γ , κ ,
thus the strong coupling is usually confirmed by observing Rabi splitting of fluorescence



Qian et al. PhotoniX            (2021) 2:21 Page 18 of 35

spectrum and dynamics of reversible interaction [45, 275, 276]. Nowadays, strong cou-
pling has been realized in several designs. By using special emitters such as J aggregates,
Rhodamine 6G molecules, or other quantum dots, hybrid plasmonic structures enable
strong coupling [230, 267, 268, 271, 272, 274, 277–279]. Also, gap plasmon structures
provide ultrasmall optical volume for strong coupling regime, such as dimer nanoan-
tennas [269, 270] and hybrid nanowires coupling with metallic film [273]. Particularly,
when considering evanescent mode from 1D or 2D waveguides [280, 281], the enhance-
ment of light-matter interaction benefits from not only gap surface plasmon [19, 282],
but also compressed optical mode volume by evanescent waves [45, 275, 276], leading to
strong photon-exciton coupling with efficient fluorescence collection and high sensitivity
to embedding environment.

Spontaneous emission in metamaterials

Metamaterials are artificial materials with distinctive optical characteristics including
negative or zero refractive index [283–293]. The idea of metamaterial was firstly proposed
by V. G. Veselago in 1968 [294], then realized by J. B. Pendry in 1999 [283, 284]. Owing
to the unique structure designs, novel applications of metamaterials are provided, such as
super-lenses, invisibility cloaks, trapped rainbow, optical blackhole, and superresolution
imaging [285, 286, 295, 296]. Nowadays, metamaterials have been developed into sev-
eral branches such as negative index materials, zero index materials, and metasurfaces.
Here we mainly introduce the spontaneous emission enhancement in metasurfaces and
epsilon-near-zero (ENZ) materials.

Spontaneous emission control withmetasurfaces

Metasurface can be seen as a 2D counterpart of metamaterials [297–300], which was
firstly realized by using subwavelength optical antennas in 2011 [Fig. 9(a)] [301]. When
light flows through metasurface, phase [Fig. 9(b)] [302], frequency [Fig. 9(c)] [303], and
polarization [Fig. 9(d)] [304] of reflected and refracted light can be controlled by the
designed metasurface. So far, people have made significant advances in metasurface, such
as planar photonic devices [297], polarization conversion [298], radiation manipulation
[306, 307], and spatiotemporal light control [308]. Recently, metasurface has been demon-
strated as a suitable platform for quantum optics [309], including quantum coherence
[310, 311], quantum interference [305, 312], and quantum entanglement [313].
In metasurface, Purcell effect mainly depends on the coupling interaction between

emitters and metasurface [314–316]. The first research was made by using plasmonic
metasurface in 2010, resulting in the Purcell factor of 102 [317]. Later, metasurface made
up of metal nanoparticles array was fabricated, exhibiting twofold Purcell enhancement in
visible spectrum [318]. Purcell effect in metasurface was also realized by Yuan et al. [319]
through designing all-dielectric metasurface composed of asymmetric geometric meta-
atoms. This structure with Purcell enhancement was also proven by other researchers
[320, 321]. Besides carefully designing metasurface, there are some other ways to enhance
the photon emission in metasurface, such as constructing partially reflecting cavity [322]
and changing the background refractive index by liquid crystals [323].
The metasurface’s ability to modulate spontaneous emission brings novel applications

in quantum interference. One fascinating example is anisotropic quantum vacuum [305]
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Fig. 9 The basic concepts and Purcell enhancement of metasurface. a The SEM image of typical metasurface
[301]. The schematic diagrams of controlling the (b) phases [302], (c) frequencies [303], and (d) polarizations
[304] of electric field by metasurface. eMetasurface controlling the light polarization for anisotropic quantum
vacuum [305]. f Anisotropic Purcell factors of x- and y-polarized emitters in the metasurface (e) [305]

through controlling the polarized light reflected by metasurface [Fig. 9(e)]. Thus the
local densities of optical states in x- and y-directions are different, i.e., anisotropic Pur-
cell enhancement occurs [Fig. 9(f )], and Purcell factors of y-polarized emitters are larger
than those of x-polarized emitters. This anisotropic Purcell enhancement can be applied
to obtain valley coherence [310], long-lifetime coherence [311], and coherent manipu-
lation [312]. Also, the specific polarization of single photon emission can be generated
by other designs of metasurfaces, like bullseye structures metasurface with radial phase
distribution [324], and metasurface-based spin-splitting bifocal lens [304].

Spontaneous emission in epsilon-near-zeromaterials

Epsilon-near-zero (ENZ) material refers to the material with a dielectric constant ε = 0.
The materials with zero-dielectric constant have been experimentally realized in various
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wavelengths [325–329], such as doped semiconductors in the near-infrared band, topo-
logical insulators in the ultraviolet, and polarizedmaterials in the mid-infrared [327, 330–
332]. If the propagation constant of the waveguide working at the cutoff frequency is
zero, its effective propagation wavelength will be infinite, which is equivalent to an ENZ
material [333].
Because of zero permittivity, ENZ materials possess extraordinary electromagnetic

properties, such as electromagnetic tunneling [292, 334–336], directional radiation [337,
338], nonlinear effect [339–343], boundary effect [344–346], and resonance stacking
effect [330, 347]. One special ability of ENZ materials is suppressing vacuum fluctu-
ation, so the cavity embedded in ENZ materials can be used to control light-matter
interaction [133, 348]. An optical cavity embedded within open ENZ materials has geo-
metrically invariant eigenmodes, which is beneficial to the generation of deformable
resonant devices [349].
In most photonic structures, Purcell factor is very sensitive to the position of the quan-

tum emitter. It always needs an accurate positioning, which is difficult to be realized in
the experiments. While in ENZ materials, Purcell factor is not much relative to the emit-
ter’s position because of a uniform local density of states [350]. Focused local field in
ENZ plates is conductive to the emission of quantum emitter [351, 352]. SE of emitters in
ENZ materials can be greatly improved by Dicke superradiation effect [353]. The air cav-
ity embedded in the open ENZ materials has two modes of radiation and non-radiation
[Fig. 10(a)], which can enhance or suppress the SE of the emitter in the cavity [Fig. 10(b)]
[354]. For the application to the single-photon source, the directional radiation can be
realized within the zero-index metamaterial [Figs. 10(c, d)] [337, 338, 355].

Fig. 10 a Sketch of air cavity embedded in the open ENZ materials with nonradiating and radiating modes
[354]. b Purcell factors for different amounts of loss (ε′′) in the ENZ medium in structure (a) [354]. c Sketch of
optical cavity made of zero-index metamaterial [337]. d Purcell factor of directional single photon source in
structure (c) [337]
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Spontaneous emission in hybrid structures

In the study of Purcell effect, the assembly of hybrid structures from different basic pho-
tonic components can achievemany advances superior to those of the individual photonic
subunits [5]. In the sections above, we mainly focused on the properties of spontaneous
emission in micro- or nanostructures only with single photonic component. However, in
the practical CQED applications, hybrid structures composed of multi-photonic-entities
are required, such as gap plasmon structures combining WGMs [249] or metamateri-
als [250]. So far, based on various photonic components, Purcell enhancement can be
obtained with novel characteristics like chirality [148] and topological protection [238].
Hybrid structures made up of PCs and plasmonic devices always attract people’s atten-

tion. In a hybrid photonic structure that consists of a gold dimer placed on the top of a
1D PC cavity, Purcell factors of 0 ∼ 4.9 × 103 are available [356], which can be applied as
a wonderful switching knob. However, it’s a challenge to couple photons from a circularly
polarized emitter into photonic structure to simultaneously realize strong spontaneous
emission enhancement and unidirectional propagation locked by helicity of optical mode.
By combining a photonic crystal and metallic nanoparticle structure [Fig. 11(a)] to create
nanocavities with both strong local-field intensity and high helicity [Fig. 11(b)] [148], the
Purcell factor of circularly polarized photons emitting into the photonic crystal waveg-
uide reaches 148 [Fig. 11(c)], which is one order of magnitude larger than that without the
nanoparticle, and with ≈ 95% of photons propagating unidirectionally along the waveg-
uide [Fig. 11(c)]. This nanophotonic interface of chiral quantum electrodynamics can be
applied in on-chip nonreciprocal quantum light sources, quantum circuits, and scalable
quantum networks.
Topological states are some unique optical modes between the optical bands, described

by topological invariants in the reciprocal space [357–359]. Recently, topological protec-
tion has been introduced into the Purcell enhancement with the discovery of mechanism
of edge state-led mode coupling under topological protection [238], that localized surface
plasmons almost do not have any influence on the edge state, while the edge state greatly
changes the local field distribution of surface plasmons [Fig. 11(e)]. Based on this mecha-
nism, in the well-designed topological photonic structure containing a resonant plasmon
nanoantenna [Fig. 11(d)], an obvious absorption reduction in the spontaneous emission
spectra appears due to the near-field deformation around the antenna induced by the edge
state [Figs. 11(f, g)]. Because a plasmon antenna with ultrasmall mode volume provides
large Purcell enhancement and simultaneously the photonic crystal guides almost all scat-
tering light into its edge state, the rate of nonscattering single photons reaches more than
104γ0 [Fig. 11(g)]. Nonscattering large Purcell enhancement will provide practical use for
on-chip quantum light sources, such as single-photon sources and nanolasers.

Summary and prospects
We have reviewed the spontaneous emission enhancement based on the CQED principle
in micro- or nanophotonic structures, including whisper gallery microcavities, photonic
crystals, surface plasmon metallic nanostructures, metamaterials, and hybrid structures.
By carefully designed optical modes in micro- or nanostructures, spontaneous emission
enhancement can be obtained with different peculiarities. Whispering gallery micro-
cavities provide high Q, thus large Purcell factors can be obtained easily. PCs require
defects and waveguides to create a cavity, which can improve photon collection but
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Fig. 11 Purcell effect in hybrid structures. a Schematic diagram of coupled structure consisting of PC and
silver nanoparticle coupled to a chiral polarized emitter [148]. bMechanism of spin-locked photonic
propagation with chiral emitter [148]. c Purcell factors of structure (a) with high directionality [148]. d
Schematic diagram of 1D topological structure including a silver nanoantenna and a quantum emitter [238].
eMechanism of edge state-led mode coupling [238]. Purcell factors of the nanoantenna (f) without and (g)
with topological structure [238]
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Purcell enhancement is not very large. By using novel PCs like Dirac/Weyl-type lattices,
people may find Purcell enhancement with more interesting characteristics. Surface plas-
mon nanostructures offer large Purcell factors in the nanoscale confined space, but the
metallic loss is always a barrier. As for metamaterials, metasurfaces focus on controlling
the phase and polarization of emitted photons, while ENZ materials keep the emis-
sion enhancement away from influence of emitters’ positions. But there are still lots of
research gaps that should be filled for Purcell effect in metamaterials. Hybrid photonic
structures allow some unique characteristics related to spontaneous emission enhance-
ment superior to single photonic entity. It’s worth looking forward to more unpredictable
innovations on spontaneous emission enhancement in more hybrid photonic structures.
Overall, achievements of spontaneous emission enhancement in micro- or nanophotonic
structures can be utilized in the on-chip quantum information process, quantum states
controlling, and quantum internet.
It’s worth stressing that interdisciplinary between quantum science and micro- or

nanophotonics has become the engine of innovation with the state-of-art nanotechnol-
ogy. Single-photon source based on Purcell enhancement is the basic building block
of on-chip quantum information, which can be applied in quantum gates [360], quan-
tum nodes [4], nanolasers [361], and so on. Also, brand-new characteristics from hybrid
structures are introduced to single photons especially topological protection [238, 362–
365]. By designing open symmetric cavities with both gain and loss mechanisms [366],
one could find amazing additional nature of single photons enhancement at exceptional
points in PT-symmetry systems. Besides CQED, more and more quantum areas have
been combined with micro- or nanophotonics. For quantum beam splitters [367], if the
enhancement of photons exists, it may be easier to observe theHong-Ou-Mandel interfer-
ometry effect, which will provide new way to engineer the quantum states. For quantum
holography [368], enhanced entangled photons may lead to the better resolution and less
noise. For quantum key distribution [369], it may help lower symbol error rate so that the
efficiency of quantum information transport can be improved. Therefore, the subject inte-
gration between quantum science and micro- or nanophotonics will be an unstoppable
trend.
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