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Abstract
Double-pass polarimetry measures the polarization properties of a sample over a range
of polar angles and all azimuths. Here, we present a tolerance analysis of all the optical
elements in both the calibration and measurement procedures to predict the
sensitivities of the double-pass polarimeter. The calibration procedure is described by a
Mueller matrix based on the eigenvalue calibration method (ECM) [1]. Our numerical
results from the calibration and measurement in the Mueller matrix description with
tolerances limited by systematic and stochastic noise from specifications of
commercially available hardware components are in good agreement with previous
experimental observations. Furthermore, by using the orientation Zernike polynomials
(OZP) which are an extension of the Jones matrix formalism, similar to the Zernike
polynomials wavefront expansion, the pupil distribution of the polarization properties
of non-depolarizing samples under test are expanded. Using polar angles ranging up
to 25°, we predict a sensitivity of 0.5% for diattenuation and 0.3° for retardance using
the root mean square (RMS) of the corresponding OZP coefficients as a measure of the
error. This numerical tool provides an approach for further improving the sensitivities of
polarimeters via error budgeting and replacing sensitive components with those
having better precision.
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Introduction
Polarimeters characterize the polarization properties of materials. They find application
in, for instance, optical samples [2], cancer non-invasive screening tools [3] in clinics,
hyper-numerical-aperture lithography [4–8] where controlled polarization enhances the
contrast and thus enabling smaller structures to be written on the wafer.
Inherited from standard interferometry [9], the double-pass configuration detecting

the phase shift between its two arms has been developed for sensing applications such
as dilatometric measurement [10] and pH monitoring [11]. In polarimetry, a double-
pass layout enables angle-resolved measurements, whereby the polarization response of
a sample for a range of polar angles and all azimuths can be measured in a synchronous
approach. This simplifies the measurement setup and saves time compared to, otherwise,
an apparatus with a function of rotating a solid angle over a certain range. Since the light is
transmitted through the sample being tested twice, each ray nominally picks up the same
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polarization properties in both the outgoing and return paths. Given the same apparatus
errors outside the sample being tested, the double-pass configuration offers double the
sensitivity of the polarization properties. The interferometric merit of the double-pass,
on the other hand, is utilized in aligning the optical components in the angle-resolved
polarimetry. While experimental demonstrations have validated the concept of double-
pass polarimetry in angle-resolved polarization measurements [2], repeatability analysis
to tolerances of the double-pass polarimeter has not been studied systematically. The
present work attempts to fill this gap by providing a detailed sensitivity analysis of the
polarimeter repeatability.
An example of the operation of a double-pass polarimeter includes the calibration and

measurement procedures. In the calibration apparatus as illustrated in Fig. 1a, a coherent
laser illuminates a polarizer (P1) and a quarter-wave plate (Q1) successively before being
reflected by a non-polarizing beam splitter (BS). The coherent laser, the polarization com-
ponents P1 and Q1, together with the reflective path of the BS, form the polarization state
generator (PSG). The laser beam then passes through the calibration sample in the for-
ward and reverse directions with the help of a mirror. The change of the polarization state
of the beam caused by the calibration sample and the mirror is analyzed by the polariza-
tion state analyzer (PSA) and readout from the CCD. The PSA consists of the transmission
path of the BS, the quarter-wave plate Q2 and the polarizer P2. The goal of the calibration
setup is to characterize the polarization properties of the PSG and PSA accurately using
calibration samples and the eigenvalue calibration method (ECM) [1]. The polarization
properties of the calibration samples can be extracted using the same setup. In the mea-
surement procedure the calibration samples and the mirror are subsequently replaced
with an objective lens, the sample under test (SUT) and a hemispherical mirror as shown
in Fig. 1b. The focus of the laser beam from the objective is aligned to coincide with the
center of the curvature of the hemispherical mirror, to ensure that the beam is reflected

Fig. 1 Sketch of the polarimeter apparatuses for the calibration and measurement procedures. a The setup
for calibrating the polarization state generator (PSG) and polarization state analyzer (PSA). The PSG includes
the coherent laser, a polarizer (P1), a quarter-wave plate (Q1), and the reflective path of the non-polarizing
beam splitter (BS) successively along the optical path. The PSA has components of the transmission path of
the BS, a quarter-wave plate (Q2) and a polarizer (P2). In step 1, the polarization properties of the calibration
samples are extracted, serving to calibrate matrices for the PSG and PSA in step 2. b In the apparatus for
measuring a sample under test (SUT), the calibration samples and the mirror are replaced with an objective,
the SUT and a hemispherical mirror to retro back the impinging beam
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back along the incoming optical path. The SUT is placed away from the focus for the laser
beam to cover its pupil.
In this work, we break down the angle-resolved measurement of a SUT into 3 steps. In

step 1, the transmittance amplitude for the two orthogonal polarization eigenstates and
the retardance of the calibration samples are extracted from the calibration apparatus by
comparing the intensities with and without the calibration samples. Step 2 is an algo-
rithmic procedure used to obtain the polarization properties of the PSG and PSA. This
algorithm depends not only on the measured intensities with and without the calibration
samples, but also on the polarization properties extracted in step 1. In step 3, the mea-
surement setup employs the calibrated PSG and PSA to measure the polarization of the
objective, SUT and hemispherical mirror together. Because the PSG and PSA are main-
tained unchanged during calibration and measurement, they cause no systematic change
in the errors in measuring the SUT. Tolerance analysis of the components affecting the
polarization from steps 1 to 3 results in the polarization measurement sensitivities.
We characterize the polarization of a non-depolarizing sample in terms of its diatten-

uation and retardance, which quantify the transmission amplitude difference between
the two orthogonal brightest and darkest axes and the phase difference between the two
orthogonal fastest and slowest axes, respectively. For non-depolarizing samples, the Jones
matrix representation of the polarization is all that is required and is simpler than the
Mueller matrix representation, in that the Jones matrix uses fewer parameters, only 4
complex elements compared to 16 real elements for the Mueller matrix. The diattenua-
tion and retardance across the pupil can be expanded in terms of the orientation Zernike
polynomials (OZP) based on the Jones matrix formalism [12–14], and the RMS of the
coefficients quantifies the diattenuation or retardance across the entire pupil by analogy
with Zernike polynomials for wavefront expansion. By inputting tolerances of available
commercial products into the numerical model, we predict a sensitivity of 0.5% RMSOZP
(a unit stands for the RMS of the corresponding OZP coefficients) for a diattenuation
pupil, equivalent to a pupil with a mean diattenuation of 1%. Likewise, the prediction of
the sensitivity for a retardance pupil is 0.3° RMS OZP corresponding to a pupil with a
mean retardance of 0.6°.
This numerical tool takes the systematic and stochastic errors of each component in the

system for both the calibration andmeasurement as inputs, and derives the sensitivities of
diattenuation and retardance to errors in the measured values in a bottom-up approach.
Whereas double-pass polarimeters can find application for characterizing incident-angle
dependent variable attenuators [15], wide-view-angle polarizers and retarders [6, 8, 16]
in lithographic equipment, this numerical tolerance analysis paves the way for predicting
the sensitivity of the polarization properties for those optical components. Furthermore,
this numerical tool can help to improve sensitivity via error-budgeting [17]. Depending
on the relative contribution of each tolerance error, targeted hardware could be replaced
to improve the sensitivity.

Methods
Step 1: Determining the properties of calibration samples

Classical calibration procedures usually rely on standard samples with well-known prop-
erties [18] or similar devices with higher accuracy. The former approach requires strict
sample fabrication, while the later one limits the accuracy of the polarimeters to be
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calibrated to, roughly, that of the calibrating polarimeter. The ECM developed by Com-
pain et al. [1] largely relaxes the requirement for special calibration samples, and is able to
extract the polarization properties of the calibration sample from the polarimeter itself,
hence nominally guaranteeing measurement accuracy. The ECM uses linear dichroic
polarizers and retarders with retardation far from 180° [1, 19]. These polarization ele-
ments need to be homogeneous [20]. That is their eigen polarization states of polarizing
elements are orthogonal. Here we extend the ECM to double-pass polarimetry. Due to
the flat mirror in the double-pass layout sketched in Fig. 1a, wave plates with retardance
of 90° are excluded from use as calibration samples. A dichroic polarizer and a 1/6-wave
plate are selected as calibration samples in this work.
Intensities modulated by the PSG and PSA are recorded. The calibration sample is first

retracted from the optical path in the setup in Fig. 1a, leaving only the mirror. This results
in the intensity matrix i0

⎡
⎢⎢⎢⎢⎣
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(1)

Here matrix a is the calculated PSA matrix from the intensity measurement. It is con-
structed from the 1st to the uth configuration of the PSA, using the first row of theMueller
matrices of the PSA. The calculated PSG matrix w is formed by v different configurations
of Stokes vectors. The middle term mmirror on the right hand side (RHS) of Eq. (1) is the
measured Mueller matrix for the mirror.
We then insert the dichroic polarizer and the 1/6-wave plate separately to obtain the

intensity matrices

ii = amb
i mmirrorm

f
i w, (2)

in which the subscript stands for the ith calibration sample. Matrices mf
i and mb

i can be
further decomposed tomf

i = R(θ)miR
(−θ ′) andmb

i = R
(−θ ′)miR(θ), where R(θ) is the

rotation matrix corresponding to azimuthal rotation angle θ of the calibration samples.
The superscript f and b denote that the light passes through the calibration sample in
a forward path and a backward path after reflection from the mirror, respectively. The
measured Mueller matrix of the dichroic polarization elements mi, with zero azimuthal
angle, can be expressed as [1]

mi =

⎡
⎢⎢⎢⎣

t2X + t2Y t2X − t2Y 0 0
t2X − t2Y t2X + t2Y 0 0

0 0 2tXtY cosφ 2tXtY sinφ

0 0 −2tXtY sinφ 2tXtY cosφ

⎤
⎥⎥⎥⎦ (3)

in which tX and tY are the measured transmittance amplitudes of the sample along the
two orthogonal directions, X and Y. We define the Z direction of the coordinate to be
aligned with the ray propagation direction, the X direction to be pointing inside, and the
Y direction to be pointing upwards at the start of the beam near the laser as demonstrated
in Fig. 1b. The measured retardance difference between the X and Y directions is φ.
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The quotient matrix ci is defined as the product of the inverse of the intensity matrix i0
and the matrix ii, which gives

ci = i−1
0 ii = w−1m−1

mirrorm
b
i mmirrorm

f
i w ≈[R(−θ)w]−1 [mi]2 [R(−θ)w] . (4)

The Mueller matrix of the mirrormmirror is in the form of Eq. (3), where the non-identity
of the reflectance is expressed by the transmittance amplitudes tX and tY , and the retar-
dance φ of the mirror in Eq. (3) is taken to be the sum of 180° and noises. The last relation
(≈) becomes an equality when no noise is present in the measured intensity matrices
i0, i1 or in the control of the azimuthal angle θ of the calibration samples. To ensure the
uniqueness of the solutions, the full rank of the PSG’s w matrix is required for the inver-
sion in Eq. (4) and the PSA’s matrix a has the same requirement. The true combinations
of the azimuthal angles of the polarizing elements in the PSG are chosen to maximize
the absolute value of the determinant of the true PSG matrixW in order to minimize the
inversion error of W in calculating the Mueller matrix for the calibration sample. Here,
we use the convention that matrices with uncapitalized and capitalized letters symbolize
the measured (or calculated) values and the actual (or true) values, respectively. The true
PSAmatrix A is optimized in the same way. The coherent laser source beam in the PSG is
modeled as a linearly polarized electrical field of Ein =[ 1; 1] /

√
2. The PSG uses 4 config-

urations in our simulations for convenience in performing the inversions, i.e., set v = 4 in
Eq. (1). Each configuration is obtained by varying the azimuthal angles of the polarizer P1
and the quarter-wave plate Q1. The true values of the polarization properties of the PSG
and PSA used in the simulation are summarized in Table 1.
The maximum absolute value of the determinant of the PSG is optimized to

|detW |=0.58 and that of the PSA is |detA|=0.06. The reflectance and transmittance ampli-
tudes of the BS are idealized to be

√
0.5 in this modeling. Note that the Mueller matrix of

the BS only affects the optimization of the azimuthal angle configurations for P1, Q1, Q2
and P2. It has no influence on the calibration error for the PSG �W = w − W or that for
the PSA �A = a − A in step 2. In the experiments, the Mueller matrix for the transmis-
sion and reflection paths through the BS could be measured in advance using a single pass
polarimeter in transmission [19, 21] and reflection [1] to ensure the calibration accuracy.
The quotient matrix ci in Eq. (4) is similar, in the linear algebra sense, to the square of

the measured Mueller matrix of the calibration sample [mi]2 given that matrix [R(θ)w] is
invertible. Therefore, the quotient matrix ci and [mi]2 share the same eigenvalues. While
the transmittance amplitudes can be calculated from the two real eigenvalues λ1 and λ2,

Table 1 The true values of the polarization properties of the PSA and PSG

PSG P1 PSG Q1 PSG BSreflect

TX/RX 0.9 0.98
√
0.5

TY/RY 0.0098 0.97
√
0.5

� 21°, 63°, 45°, 52° -90°, -88°, 48°, -3° 0°

� 0° 90° 180°

PSA BStransmit PSA Q2 PSA P2

TX
√
0.5 0.98 0.9

TY
√
0.5 0.97 0.0098

� 0° 40°, -84°, -46°, 75° -39°, 81°, -9°, -1°

� 0° 90° 0°
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as tX = 4√λ1 and tY = 4√λ2, the retardance of the calibration sample φ is a function of the
two complex eigenvalues λ3 and λ4, as φ = ∣∣arg (λ3) − arg (λ4)

∣∣.
Error sources depending on the measurement time scale are categorized into stochastic

noise and systematic errors. Characteristic time scales are the total measurement time for
intensities without the calibration samples i0, those with the calibration samples ii and the
sample-switch time in between. Stochastic noise with a time scale shorter than the total
measurement time, comes from the laser source, the CCD, vibration of the rotatory posi-
tioners and the mechanical mounts of the optical elements. Each pixel of the CCD has a
fluctuation of± 0.3% in the measured intensity which is modeled as statistically the same,
and comes primarily from the repeatability of the laser source [22] and the random spatial
non-uniformity in the CCD [23]. Both cross-talk between neighboring pixels and elec-
trical shot noise contribute to the spatial non-uniformity. Cross-talk is simulated via the
correlation length of these noise sources across the CCD. The correlation length is taken
to be 1 pixel for simplicity, i.e. no cross-talk is assumed. For longer correlation lengths,
filtering algorithms may be applied to reduce the noise influence. The impact of electri-
cal shot noise on the signal to noise ratio decreases as the number of photons increases
(assuming the photon-to-electron conversion rate of 1). By carefully selecting the mea-
surement conditions so that the CCD is near saturation, electrical shot noise buried in the
signal controlled by the power of the laser and the integration time of the CCD can have
less than 1/10 of the influence on diattenuation and retardance caused by the quantiza-
tion noise due to the analogue-to-digital conversion (ADC) of the CCD. Electrical shot
noise can therefore be safely neglected under the assumption of near CCD saturation,
1014 photons per pixel in the model. The stochastic vibration of the rotatory position-
ers attached to polarization elements P1, Q1, Q2, and P2 in axial direction is taken to
be 0.01°. This follows from the Thorlabs’ motorized rotator K10CR1 [24] specifications.
Tilted variation of the PSG and PSA on the other hand is allocated to the polarization
properties of the mirror and the BS in addition to the stochastic noise of the retardance
and reflectance across the mirror. The pre-measurement of the mirror can be performed
by a single pass polarimeter in reflection mode using analysis [1] similar to this step to
obtain those stochastic noise. The difference lies in that for the double-pass layout the
light probes a SUT in both forward and backward directions, while in the single pass
polarimeter the light incidents on a SUT (mirror here) only once. To calibrate the mirror
under normal incidence, an additional BS is required to deflect the beam from reflection
in the single pass polarimeter and should be calibrated in advance. The tolerance types
for stochastic noise and their values are summarized in Table 2.
Elements of the measured intensity matrix in Eq. (1) equal to the true values plus errors,

ix,y0 = Ix,y0 + �Ix,y0 (where x = 1, 2, ...,u; y = 1, 2, ..., v). The measured azimuthal angle
θ = �+�� in Eq. (4) is the sum of true value� and precision�� of rotatory positioners.
The reflectance error of the mirror �RX/Y = rX/Y − RX/Y , the retardance error �� =
φ − � and the transmittance amplitude error �TX/Y = tX/Y − TX/Y all follow the same
convention.
Although the PSG and PSA nominally have systematic errors, with the settings of the

PSG and PSA being the same between the calibration (Fig. 1a) and measurement (Fig. 1b)
setups there is no systematic change in the errors for the PSG and PSA matrices w and
a. Therefore, the systematic error introduced in the modeling comes from the mirror in
steps 1-2, the objective and the hemispherical mirror in step 3. The CCD is a common
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Table 2 Tolerance types and their values for stochastic noise

Tolerance type Value Source In step

�Ix,y0 ,�Ix,yi 0.3% laser and CCD 1,2,3

�RX ,�RY 0.0002 mirror 1,2

�RX ,�RY 0.0002 hemispherical mirror 3

�TX ,�TY 0.0002 calibration samples 2

�� 0.03° mirror 1,2

�� 0.03° hemispherical mirror 3

�� 0.012° calibration samples 2

�� 0.01° P1, Q1, Q2, P2, and BS 1,3

�� 0.01° mirror 1,2

�� 0.2° [24] hemispherical mirror 3

�� 0.2° [24] calibration samples 2

element in both the calibration and measurement layout, nevertheless, information loss
in the process of ADC cannot be calibrated out. Hence the systematic error from the CCD
must be included in all 3 steps. Systematic errors are listed in Table 3.
With the stochastic and systematic errors of each component of the polarimeter listed

above, we simulate both the stochastic noise and systematic errors in the properties of the
calibration samples using a bottom-up approach. To reduce the rotational asymmetrical
noise such as the tilt angle of the calibration samples, we rotate the calibration sample
azimuthally and take the average over the -90° to 90° range. Figure 2a shows the calibrated
transmittance amplitudes tX , tY and retardance φ as a function of the azimuthal angle
of the 1/6-wave plate sample. The average measurement value is displayed as a red line
with the true values of the transmittance amplitudes being TX = 0.98, TY = 0.97 and
that of the true retardance being � = 60°. The stochastic noise is defined as the differ-
ence between the average measurement over all azimuths and the true value. A 1000-trial
simulation in Fig. 2b indicates that the calibration stochastic noise for transmittance is
�TX < ±0.0002, �TY < ±0.0002 and that for retardance is �� < ±0.012° as shown in
Table 2. For the calibration sample polarizer, this step is sufficient to determine the trans-
mittance amplitude of the bright transmission axis, but not the dark axis. Using two 40
dB polarizers in series could ensure a stochastic error �TY < ±0.0002. The calibrated

Table 3 Tolerance types and their values for systematic errors

Tolerance type Value Source In step

�Ix,y0 ,�Ix,yi 10 bit CCD 1,2,3

�RX 1 − √
0.45 mirror 1,2

�RY 1 − √
0.43 mirror 1,2

�RX 1 − √
0.5 hemispherical mirror 3

�RY 1 − √
0.4 hemispherical mirror 3

�� 3° mirror 1,2

�� 3° hemispherical mirror 3

�� 0.2° mirror 1,2

Diattenuation 0.115% RMS OZP objective in forward path 3

Retardance 0.15° RMS OZP objective in forward path 3

Diattenuation 0.114% RMS OZP objective in backward path 3

Retardance 0.14° RMS OZP objective in backward path 3



Yu et al. PhotoniX            (2020) 1:18 Page 8 of 20

Fig. 2 The measurement results of and stochastic noise in the polarization properties of the 1/6-wave plate
in a double-pass setup. aMeasurement results of the transmittance amplitude tX , tY , and the retardance φ as
a function of the azimuthal angles from the -90° to 90° range. The red line is the average measurement value
over all measured azimuthal angles. The true transmittance amplitudes are TX = 0.98, TY = 0.97, and the true
retardance is � = 60°. b The stochastic noise for 1000 trials. For each trial the stochastic noise is defined as
the average measurement (red line) minus the true value of each polarization property

polarization properties of the 1/6-wave plate and polarizer, together with their stochastic
noise determines the calibration accuracy for the PSG w and PSA amatrices in step 2.

Step 2: Calibration of the PSG and PSAmatrices

In this subsection, we calculate the PSGw and PSA amatrices as well as expand the work-
ing range of the azimuthal angles of the calibration samples from those used in the past
[25]. To compute the PSG matrix w, w in Eq. (4) is first replaced with an unknown matrix
x. This results inmDP

i x−xci = 0, where the samplematrix for the double-pass polarimeter
is defined as mDP

i ≡ m−1
mirrorm

b
i mmirrorm

f
i . A linear operator of the ith calibration sample

hi is related to the quotient matrix ci and the sample matrixmDP
i by

hi
(
mDP

i , ci
)
x = 0. (5)

The linear operator hi is a 16×16 matrix, the elements of which are detailed in Eqs. (10)
and (11) in Appendix A. The calibrated PSG matrix w is then the non-zero solution to
Eq. (5). The Mueller matrix of the calibration samples in the double-pass mDP

i including
the transmittance amplitudes tX , tY , the retardance φ of mb

i and mf
i are calculated from

step 1, while the azimuthal angle error �� in the rotation matrix R(θ = � + ��) in
Eq. (4) is determined by the commercial rotary positioners repeatability of 0.2° as listed in
Table 2. A Hermitian k matrix is defined as the transpose of the linear operator hi times
itself with the summation of all calibration samples

k
(
mDP

i , ci
)
x =

(∑
i
hTi hi

)
x. (6)

In this way, all 16 calculated eigenvalues λ(1) < λ(2) < . . . < λ(16) of k must be positive
and real. The eigenvector with eigenvalue closest to 0 is the calculated PSGwmatrix, after
the 16×1 eigenvector being reshaped into a 4× 4 matrix. Three calibration samples i = 3
are enough [19], and the first sample is a polarizer with azimuthal angle � = 0°. To find
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suitable combinations of azimuthal angles that guarantee calibration accuracy, we plot the
error estimator log[λ(2)/λ(1)] as a function of the azimuthal angles for calibration sample
2 (a polarizer with different azimuthal angle to sample 1) and sample 3 (a 1/6-wave plate)
in Fig. 3a. Both of their azimuthal angles are varied from -90° to 90°.
Stochastic noise contributions to the error estimator include the rotational repeatabil-

ity of the calibration samples as limited by mechanical positioners, intensity fluctuations,
stochastic polarization noise of the calibration samples in step 1 and that of the mirror.
Systematic errors come from the quantization error of the ADC, and the polarization
properties of the mirror. Values of these errors are given in Tables 2 and 3. Each combi-
nation of azimuthal angles in Fig. 3a is averaged over 100 trails to reduce the influence
from stochastic noise. The larger the value of the error estimator, the closer the smallest
eigenvalue of k in Eq. (6) is to 0, and consequently the more accurate the calculated PSGw
matrix will be. We observe that the error estimator is relatively small, log[λ(2)/λ(1)]< 9,
when the 1/6-wave plate has the same azimuthal angle (� ≈ 0°, the middle horizontal
reddish line in Fig. 3a) as that of the first polarizer. It is likely that the lack of calibra-
tion accuracy is due to the azimuthal angle overlap of the two orthogonal eigenstates of
the first polarizer and the 1/6-wave plate, blurring the precision of the eigenvalue-based
calibration method.
We further calculated the calibration error between the calibrated and the true PSG

matrices �W and that of the PSA error matrix �A. The calculated PSG w matrix is nor-
malized by its transmission before the comparison with the true PSG matrix W, because
the eigenvector of Eq. (6) can be scaled with any real number. As the calculated PSA
matrix a is derived from the measured intensity using Eq. (1), it will give an inverse scal-
ing factor to the calculated PSG matrix w if the normalization is not done. Consequently,
normalization of transmission only serves for obtaining the error for the PSG �W and
the PSA �A. The PSG w and PSA a matrices without normalization will not affect the
measurement accuracy of a SUT in step 3. The logarithm of the error of the PSG �W and
the PSA �A as a function of the azimuthal angles of the 1/6-wave plate and the polarizer
are plotted in Fig. 3b and c, respectively. The first element (1,1) of the 4×4 error matrices
can be chosen without loss of generality. The other 15 elements of the error matrices �W
and �A share roughly the same calibration error. The cross areas in the middle of the
error matrices for the PSG and PSA display a relatively worse accuracy, and are aligned

Fig. 3 Maps of the error estimator, the calibration error matrix for the PSG �W and the PSA �A as a function
of the azimuthal angles of the polarizer and the 1/6-wave plate. a The error estimator is taken to be
log[λ(2)/λ(1)], where λ(2)/λ(1) is the quotient of the two smallest eigenvalues for k in Eq. (6). b The error
between the true and measured values of the PSG matrix in logarithm log(�W). The element (1,1) in the 4×4
matrix is presented. c The error of the (1,1) element in the PSA matrix in logarithm log(�A). The measured
and true matrices for the PSG and PSA are normalized by their transmittance
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with the error estimator map, log[λ(2)/λ(1)] in Fig. 3a. As a result, the requirement for
alignment of the calibration samples can be relaxed to all the yellowish areas in Fig. 3a,
corresponding to the error estimator log[λ(2)/λ(1)] >10.
Former experimental observations reveal the calibration accuracy of the PSG and PSA

matrices, where an average of a standard deviation over all 16 Mueller matrix elements is
employed for quantification [19]. In those experiments, the averaged standard deviation
is 6.7×10−4 for the PSG matrix and 6.0×10−4 for the PSA matrix over 38 calibrations.
We simulate the pixel-based PSG and PSA matrices for 10000 trails, and obtain the aver-
aged standard deviation of 5.9×10−4 for the calibrated PSG and that of 3.6×10−4 for the
calibrated PSA, which is in line with the experiments, verifying our tolerance analysis for
the calibration.

Step 3: Angle-resolvedmeasurement

The alignment of the objective to the center of the hemispherical mirror can bemonitored
by adding an interferometer arm to form an interference pattern on the CCD. This added
arm would extend horizontally from the laser and the PSG, and have a mirror at the end.
The simulation flow leading to the prediction of the sensitivities for the angle-resolved

measurements is depicted in Fig. 4a. The simulation uses a generated Jones matrix cover-
ing the whole pupil (in short Jones pupil matrix) as the true Jones pupil matrix of a SUT
Jtrue. It is synthesized by the RMS of the coefficients of up to order 72 in an expansion
using the OZP for diattenuation and retardance [12–14].
The Jones pupil matrix is converted to a Mueller pupil matrix to be compatible with the

Mueller matrix descriptionMtrue of the PSG and PSA in step 1-2. The true PSGmatrixW,
PSA matrix A, stochastic noise from the hemispherical mirror (whose values are listed in
Table 2), combined with the systematic errors from the objective and hemispherical mir-
ror (whose values are listed in Table 3), result in the true intensity Itrue. Objectives usually
contain multiple lenses to ensure a specific image quality over the field of view. As polar-
ization relies on the order of the components the light passes through, the polarization of

Fig. 4 The simulation flow for prediction of the polarization sensitivities and an objective layout. a Blue
blocks: parameters being tracked through the simulation; yellow blocks: stochastic noise and systematic
errors; green blocks: idealized or true values of optical elements. b The layout of the objective used in step 3
with an incident angle of 25.4° from a Japanese patent 61_2925 860129 in the Code V patent database [26]
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the light traveling through the objective in the forward direction, from collimated space
to the focus as sketched in Fig. 4b from top to bottom, differs from the light transmitted
by the objective in the backward or return direction. As an example, we choose a Japanese
patent 61_ 2925 860129 in the CODE V database [26] with a half incident angle of 25.4° to
investigate its polarization properties. Without applying optical coatings to the objective,
we trace the polarization of the objective in both the forward and backward directions.
The backward beams exiting the object have maximum deviation angles of 0.29° along
the periphery due to the imperfect wavefront of the objective. Systematic errors of diat-
tenuation and retardance of the objective considering the retrace error in the backward
direction are listed in Table 3. Random intensity noise at each pixel and information loss
from the ADC are added to the intensity as error sources to form the measurement inten-
sity Imeasure. The calibrated PSG matrix w, PSA matrix a, and idealized Mueller matrix [1
0 0 0; 0 1 0 0; 0 0 -1 0;0 0 0 -1] are employed to calculate the Mueller matrix of the SUT
in the forward path Mmeasure. The Mueller pupil matrix is converted to the Jones pupil
matrix afterwards. This procedure removes the information about depolarization con-
tained in the Mueller matrix to obtain the Jones matrix. Depolarization in the measured
Mueller matrixMmeasure comes from overlap of incoherent electromagnetic fields [3]. To
convert the Mueller matrix with limited depolarization to the Jones matrix Jmeasure, the
non-depolarization condition for the conversion trace

(
MTM

) = 4m2
11 [27] is approxi-

mated as
∣∣trace(MTM) − 4m2

11
∣∣ < 0.01. For measurements that meet this condition, the

Jones matrix can be derived from the Mueller matrix via expressions given in Ref. [28].
The RMS of the OZP coefficients for either diattenuation or retardance is a single num-

ber used to quantify the goodness of a Jones pupil via the relative transmittance amplitude
difference between the brightest and darkest axes or retardance delay between the fastest
and slowest axes across the pupil of a SUT, respectively. Mathematical details of the OZP
can be found in Appendix B. For 72 terms the highest power in the radial direction of
the OZP is 10, corresponding to the highest radial power of the 36th term of the fringe
Zernike polynomials [26].
Though the true reflectance amplitude of the hemispherical mirror is not unity, only

the difference between the reflectance in the X and Y directions affects the diatten-
uation and retardance of the pupil. This is because the measured Jones pupil matrix
Jmeasure is further decomposed into a product of apodization, a partial polarizer, a
retarder and two other physically meaningful matrices [5], and only the diattenuation
pupil in the partial polarizer and the retardance pupil in the retarder will be further
expanded by the OZP. Writing the reflectance in theAQKindly check all equations pre-
sentation and citation if presented correctly. X and Y directions of the hemispherical
mirror as rX = rY + �RXY, the average of the reflectance in the X and Y direc-
tion contributes only to the apodization of the SUT. The difference of the reflectance
amplitudes �RXY will be counted in the first term of the OZP expansion (see Eqs. (19)
and (20) for the mathematics). Since rotating the hemispherical mirror azimuthally for
90° swaps the reflectance values rX and rY , taking the average of the fitting coeffi-
cients to the OZP expansion, measured with 0° and 90° hemispherical mirror rotation,
improves the accuracy of the OZP coefficients for the diattenuation and retardance
pupils.
We decompose both Jtrue and Jmeasure into an OZP description of retardance and diat-

tenuation, using the first 72 terms. The RMS of the coefficients are calculated as RMS
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=
√∑72

j=1 coej/(j + 1), with coej denoting the jth OZP coefficient. Comparison of the true
Jones pupil matrix for the SUT and the measured value is made by running the simula-
tion through the flow in Fig. 4a for 100 trials. The repeatability in terms of the RMS of
the OZP coefficients replaces the mean value in the standard variance [29] with the true
value, defined as

repeatability ≡ 4

√∑trail
1 |RMS_OZP2meas,trail − RMS_OZP2true|2

trail − 1
. (7)

Before predicting the sensitivity presented by RMS OZP in the Jones matrix descrip-
tion, we apply our tolerance analysis to the SUT in terms of the Mueller matrix in the
measurement procedure similar to that reported experimental observations in Ref. [1].
We compare the true Mueller matrix Mtrue with the measured Mueller matrix Mmeasure
in the simulation flow as sketched in Fig. 4a. Both of the two matrices are normalized to
their (1, 1) elements, so that the relative error of the (2, 2), (3, 3) and (4, 4) elements of the
matrices can be calculated under the condition of a non-identity Mueller matrix of the
mirror. Off-diagonal elements of the Mueller matrices Mtrue and Mmeasure are small due
to the generated weak polarization properties of the SUT, leading to unphysically large
relative errors, and thus they are safely disregarded in the comparison. We obtain a max-
imum 0.4% over all three Mueller matrix pupils, in good agreement with the 0.5% in the
reported experiment.

Results and discussion
Sensitivity is defined in terms of a boundary. In Fig. 5, the boundary where repeatability
equals the true value is the line with a slope of 1 through the origin (0,0). Away from the
gray shadow areas, the repeatability (i.e. the measurement uncertainties) are smaller than
the true values. The sensitivity of the diattenuation pupil depends on the corresponding
retardance. Larger retardance leads to better sensitivity for diattenuation in general. The
same phenomenon applies to the sensitivity of retardance as well. It is likely that the mea-
surement is more sensitive when the SUT exhibits strong polarization properties, and the

Fig. 5 Sensitivities of diattenuation and retardance. a Repeatability of diattenuation as a function of its true
value expressed in RMS OZP. Colors denote the true values of the corresponding retardance of the pupils. A
dotted red line going through the origin (0,0) has a slope of 1, where the true values equal to repeatability,
defining sensitivity. Pupils with the polarization properties inside gray shaded areas have worse repeatability
than the true values. b Repeatability of retardance versus the true retardance of the pupils. Colors denote the
true values of the corresponding diattenuation of the pupils expressed in RMS OZP. Each repeatability is
calculated from 100 trials, where each trial follows the complete flow in Fig. 4a. Black arrows point to the
pupils that meet our definition of sensitivity, and polarization properties of these pupils are visualized in Fig. 6
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retardance and diattenuation are not decoupled in calculating the repeatability of either
of them. To reduce the sensitivity from a set of values to a single value, we quantify the
sensitivity of diattenuation with an additional requirement: the corresponding retardance
of the pupil should be of the same order of magnitude as the diattenuation. This results
a 0.5% RMS OZP sensitivity for diattenuation. With the same requirement, the predicted
sensitivity for retardance is 0.3° RMS OZP.
Visualization of the pupils for the true diattenuation and retardance when their sensitiv-

ities are reached (labeled with black arrows in Fig. 5), i.e. 0.5% RMSOZP for diattenuation
and 0.3° RMS OZP for retardance, is shown in Fig. 6a and d, respectively. The mean of
the measured pupils of diattenuation and retardance comes from the measured Jones
pupil Jmeasure, and a decomposition of the measured Jones pupil in terms of diattenuation
and retardance thereafter. Reconstruction of the pupils for diattenuation and retardance
is based on the first 72 terms of the OZP expansion, where each pixel of the pupils for
diattenuation and retardance is averaged over 100 trials. The sensitivity of diattenuation
shows an average of 1% over all pixels of a pupil displayed in Fig. 6b with repeatability
around 1/3 of that displayed in Fig. 6c. For the sensitivity of retardance, the average of the
pupil is 0.6° as shown in Fig. 6d with a repeatability around 1/3 of that as well, as shown
in Fig. 6f. Directional lines on the diattenuation pupils denote azimuthal angles for the
partial polarizer, while they denote those for the retarder on the pupils of retardance. The
azimuthal angle pupil reconstructed from the OZP coefficients may have a 90° shift, due
to the limitation of the inverse trigonometric functions described in Eqs. (27) and (28) in
Appendix B. Horizontal lines represent an azimuthal angle of 0° , while vertical lines rep-
resent 90° . White lines with directions other than vertical or horizontal represent error,
the larger the error of the direction, the farther away the direction of the white line is from

Fig. 6 Visualization of the pupils for diattenuation and retardance when their repeatabilities equal to their
true values. a A SUT pupil of true diattenuation decomposed from a pupil of the Jones matrix. The Jones
matrix pupil has diattenuation of 0.5% RMS OZP and retardance of 0.5° RMS OZP. b The mean of the
measured pupil of diattenuation and c the repeatability pupil of diattenuation reconstructed from the first 72
terms of the OZP expansion over 100 trials. d A pupil of true diattenuation after the Jones matrix pupil
decomposition. The Jones pupil has diattenuation of 0.8% RMS OZP and retardance of 0.3° RMS OZP. e The
mean of the measured pupil of retardance and f the repeatability pupil of retardance from reconstruction
over 100 trials. From inside to outside, concentric circles correspond to angles at the objective of 5°, 15° and
25°. White directional lines denote the azimuthal angles across the pupils
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either vertical or horizontal. When treating the 90° shift to be error-free, the repeatabil-
ity of the azimuthal angle is 5° for diattenuation and 3° for retardance averaged across the
pupil, lower than 1/10 of the mean values of that for diattenuation and retardance.
Concentric circles with different radii on the pupil correspond to different incident

angles of the laser beam away from the focal plane of the objective. In Fig. 6, from inside
to outside the concentric circles correspond to angles at the objective of 5°, 15° and 25°.
Pupils of diattenuation and retardance provide a visualization of the azimuthal anisotropy
and polarization response of a refractive sample under non-normal incidence.

Conclusion
In conclusion, we have performed a detailed tolerance analysis of the calibration andmea-
surement procedures for a double-pass polarimeter, and have predicted the sensitivity
of the polarimeter to systematic errors and stochastic noise. The eigenvalue calibration
method ECM [1] is used in the polarimeter calibration, resulting in theMueller and Stokes
description of the PSG and PSA characteristic matrices. The Mueller pupil matrix of an
arbitrary non-depolarizing SUT is predicted before it is converted to a Jones pupil matrix.
Our tolerance model for the calibration of the PSG and PSA, as well as the measure-
ment of the Mueller matrix pupil are consistent with previous experimental observations
[1, 19]. Thanks to the Jones pupil decomposition and the OZP expansions of diatten-
uation and retardance, the whole pupil of the SUT can be described by two values,
diattenuation and retardance in terms of the RMS of the OZP coefficients. The sensitiv-
ity prediction for diattenuation is 0.5% and that for retardance is 0.3°. The double-pass
polarimeter offers a platform to measure angle-resolved SUTs, revealing the azimuthal
inhomogeneity of retardance and diattenuation. The ECM, tolerance analysis and the sub-
sequent conversion of the measured Mueller pupil matrix of the SUT to a Jones pupil
matrix in terms of the OZP expansions to predict sensitivities and visualize retardance
and diattenuation pupils can also be applied to a single pass polarimeter. Though the inci-
dent angle would not be resolved in the single pass polarimeter, without a BS and a mirror
fewer noise sources are included. The singe pass polarimeter can achieve better sensitiv-
ity of diattenuation and retardance as well as resolve the small inhomogeneity of the pupil
under normal incidence.

Appendix A. Error propagation
We have derived a simplified theory of error propagation for double-pass polarimetry to
cross-check our numerical simulations with tolerances. By employing perturbation the-
ory to the first order, we theoretically calculate the error of the PSGmatrix �W given the
measurables without any calibration samples for i0 and with the calibration sample for ii.

i0 = ammirrorw = AMmirrorW + � (AMmirrorW )

ii = amb
i mmirrorm

f
i w = AMb

i MmirrorM
f
i W + �

(
AMb

i MmirrorM
f
i W

)
(8)

The noise propagation of the quotient matrix ci combining Eqs. (8) and (4) to the first
order results in the expression
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ci = W−1MDP
i W

+ W−1M−1
mirrorA

−1�(AMmirrorW )W−1MDP
i W

− W−1M−1
mirrorA

−1�
(
AMb

i MmirrorM
f
i W

)
. (9)

Letting the unknown x = W +�W , the linear operator hi(x) in Eq. (5) is expanded to the
first order with the quotient matrix from Eq. (9), as

hi(W + �W ) = MDP
i �W − �WW−1MDP

i W

+ �
(
MDP

i
)
W

+ M−1
mirrorA

−1�(AMmirrorW )W−1MDP
i W

− M−1
mirrorA

−1�
(
AMb

i MmirrorM
f
i W

)
. (10)

Factoring the first term on the RHS in Eq. (10), we operate on the elements of the matri-
ces. It follows that by applying the relation for the least square fit�Wp,q = δp,Fδq,G�WF ,G,
where δ is the Kronecker delta, p, q, F and G are summed from 1 to 4, we have

[
MDP

i �W − �WW−1MDP
i W

]
p,q

= MDP
i,p,o�Wo,q − �Wp,o

(
W−1MDP

i W
)
o,q

=
[
MDP

i,p,oδo,FδG,q − (
W−1MDP

i W
)
o,q δp,Fδo,G

]
�WF ,G

=
[
MDP

i,p,FδG,q − (
W−1MDP

i W
)
G,q δp,F

]
�WF ,G

≡ Gi,μ,ν�Wν . (11)

The single indices μ and ν label all possible combinations of F ,G and p, q.

μ = 1 → p, q = 1, 1; ν = 1 → F ,G = 1, 1

μ = 2 → p, q = 1, 2; ν = 2 → F ,G = 1, 2
...

...

μ = 15 → p, q = 4, 3; ν = 15 → F ,G = 4, 3

μ = 16 → p, q = 4, 4; ν = 16 → F ,G = 4, 4 (12)

The last two terms on the RHS in Eq. (10) are influenced by the intensity
with the calibration sample �

(
AMb

i MmirrorM
f
i W

)
and without it � (AMmirrorW ).

Hence, the intensity error is defined as �Ii,μ ≡
[
M−1

mirrorA−1� (AMmirrorW )

W−1MDP
i W − M−1

mirrorA−1�
(
AMb

i MmirrorM
f
i W

)]
p,q

. Assuming Gi,μ,ν is invertible,
Eq. (10) can be simplified to

�Wν = − (
Gi,μ,ν

)−1
{[

�
(
MDP

i
)
W

]
i,μ + �Ii,μ

}
. (13)

This expresses the linear relationship between one element of the PSG error matrix �Wν

and the sum of the stochastic noise of the calculated calibration sample �
(
MDP

i
)
times

the true PSG matrixW and the noise of the measured intensity �Ii,μ.
To verify the validity of our numerical tool for the tolerance analysis, we simulate the

PSG error �W matrix as a variation of the intensity error. The stochastic noise of the
calibration sample�

(
MDP

i
)
in Eq. (13) is idealized to be 0. Modeling results show that the

error across the pupil of one element of the 4×4 PSGmatrix�W3,1(β=9) increases linearly
with the intensity noise as expected as shown in Fig. 7. The intensity noise normalized by
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Fig. 7 The pupil of the error between the true and calibrated PSG matrices as a variation of the intensity
noise. The colormap displays linear relation between the input normalized intensity noise and the error across
the pupil of the element (3,1) of the 4×4 PSG error matrix �W3,1(β=9) .The pupil is scaled to have a radius of 1

the intensity of the PSA and PSG varies from ±0.0003, ±0.003, ±0.03 to ±0.3 and they
are modeled as statistically the same at each pixel. Settings of the PSG and PSA are listed
in Table 1 with the laser source having the electrical field of Ein =[ 1; 1] /

√
2.

Appendix B. Mathematics for the OZP
For non-depolarizing samples, each pixel inside the pupil of a SUT can be characterized
by a 2×2 complex Jones matrix. The Jones matrix at each pixel of a pupil is decomposed
to two scalars and three Jones matrices to have clear physical interpretation [5], as

J ≈ tei�global Jpol(d, γ )Jrot(α)Jret(φ,β). (14)

The two scalars are a transmission t and a global phase �global, while the three Jones
matrices are for a partial polarizer Jpol, a rotator Jrot and a retarder Jret , in the form of

Jpol(d, γ ) =
[
cos γ − sin γ

sin γ cos γ

][
1 + d

2 0
0 1 − d

2

][
cos γ sin γ

− sin γ cos γ

]

=
[
1 + d

2 cos 2γ
d
2 sin 2γ

d
2 sin 2γ 1 − d

2 cos 2γ

]
, (15)

Jrot(α) =
[
cosα − sinα

sinα cosα

]
, (16)
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Jret(φ,β) =
[
cosβ − sinβ

sinβ cosβ

][
e
iφ
2 0
0 e

−iφ
2

] [
cosβ sinβ

− sinβ cosβ

]

=
[
cos φ

2 + i sin φ
2 cos 2β i sin φ

2 sin 2β
i sin φ

2 sin 2β cos φ
2 − i sin φ

2 cos 2β

]
, (17)

where the diattenuation d is the transmittance amplitude difference between the two
orthogonal polarization eigenstates, and the retardance φ describes the retardance dif-
ference between those. Azimuthal angles γ and β determine the directions of the partial
polarizer and the retarder, respectively.
The Jones matrices for the partial polarizer and the retarder can be further expanded

by the OZP [12–14, 30], similar to the Zernike polynomials wavefront expansion. Orien-
tation describes the polarization directions of diattenuation and retardance. Orthogonal
unity orientor matrices in polar coordinate (r,ω) with radius r = 1 are given by

Om
0 (ω) =

[
cosmω sinmω

sinmω − cosmω

]
, Om

1 (ω) =
[

sinmω − cosmω

− cosmω − sinmω

]
, (18)

wherem indexes azimuthal degree ω.
The Jones pupil matrix for partial polarization and retardance can be divided into a

diagonal matrix with equal values of non-zero elements and the rest term. The rest term
of the pupil is expanded by a sum of the OZP with their coefficients coej to the jth order.
In polar coordinate (r,ω), each pixel on the pupil of the partial polarizer described by
Eq. (15) and the retarder described by Eq. (17) are expanded by the OZP as

Jpol(d, γ , r,ω) = I(r,ω) + d(r,ω)

2

[
cos 2γ (r,ω) sin 2γ (r,ω)

sin 2γ (r,ω) − cos 2γ (r,ω)

]

≈ I(r,ω) +
∑
j
coejOZj(r,ω) (19)

Jret(φ,β , r,ω) = cos
φ(r,w)

2
I(r,ω) + i sin

φ(r,ω)

2

[
cos 2β(r,ω) sin 2β(r,ω)

sin 2β(r,ω) − cos 2β(r,ω)

]

≈ cos
φ(r,ω)

2
I(r,ω) + i

∑
j
coejOZj(r,ω), (20)

where the approximation sin φ(r,ω)
2 ≈ φ(r,w)

2 is used. The term OZj(r,ω) is further
decoupled into a position (r) dependent term and an orientor matrix depending on the
azimuths ω, as

OZj(r,ω) = OZm
n,ε(r,ω) = Rm

n (r)Om
ε (ω) (21)

Rm
n (r) =

(n−|m|)/2∑
s=0

(−1)s(n − s)!
s!

(n+m
2 − s

)
!
(n−m

2 − s
)
!
rn−2s, (22)

where n indexes the highest power in radial direction and ε=0, 1 for the 2 orientor matrix
in Eq. (18). The order label j represents combinations of the OZP indices m, n, ε with the
relation n − m = 2l, l = 0, 1, ...n, n ∈ Z

+. Corresponding relation between j and m, n, ε
up to the first 16 terms of the OZP is displayed in Table 4.
The OZP expansion of diattenuation and retardance are approximations. To test the

accuracy of these approximations, we use the first 72 orders of the OZP. A to-be
OZP expanded and reconstructed diattenuation pupil consists of 4 pupils of elements,
among which two pupils are independent. We label the upper-left element in the matrix
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Fig. 8 Accuracy of the Jones pupil reconstructed from the first 72 terms of the OZP. a Two independent
elements of the Jones matrix are made for comparison, which are the upper-left element in the matrix
labeled with subscript ’xx’ and the element in the upper-right labeled as ’xy’. The input pupil for diattenuation
is from Fig. 6a. b The input pupil for retardance is from Fig. 6d. The difference between the reconstructed and
the input original pupil based on the first 72 orders of the OZP is around 1/10 of either of them

as Jinputdiaxx = d
2 cos 2γ and that in the upper-right as Jinputdiaxy = d

2 sin 2γ . Simi-
larly, two independent matrix elements for retardance are Jinputretxx = sin φ

2 cos 2β and
Jinputretxy = sin φ

2 sin 2β . As shown in Fig. 8, the pupils of the two independent elements
in diattenuation or retardance matrices are compared between the reconstruction from
the coefficients to the OZP and the inputs. Two independent elements of the matrix∑

j coejOZj(r,ω) are reconstructed from the OZP coefficients, as

Jreconstxx(r,ω) =
72∑
j=1

coejRm
n (r) cos(mω) (23)

Jreconstxy(r,ω) =
72∑
j=1

coejRm
n (r) sin(mω). (24)

Differences from the input Jinput and reconstructed Jreconst Jones matrix pupils are an
order of magnitude less than either the input J input or the reconstructed Jreconst. Diat-
tenuation and retardance pupils used for comparison comes from those in Fig. 6a and d,
respectively. This difference is around 1/3 of that between themean of themeasured pupil
and the repeatability pupil for either diattenuation (in Fig. 6b-c) or retardance (in Fig. 6e-
f ), demonstrating that the OZP expansion well represents diattenuation and retardance
pupils. Therefore, errors contributed from the reconstruction with the first 72 orders

Table 4 The relation between j andm, n, ε up to the first 16 terms of the OZP

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 0 0 1 -1 1 -1 0 0 2 -2 2 -2 3 -3 3 -3

n 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3

ε 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
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of the OZP is negligible in calculating the sensitivities for diattenuation and retardance.
The reconstruction of the diattenuation and retardance pupils as well as the direction of
the partial polarizer and the retarder from the two independent elements Jreconstxx and
Jreconstxy is given by

dreconst = 2
√
Jreconst2xx + Jreconst2xy (25)

φreconst = 2 arcsin
√
Jreconst2xx + Jreconst2xy (26)

γreconst = 1
2
arctan

Jreconstxy
Jreconstxx

for diattenuation (27)

βreconst = 1
2
arctan

Jreconstxy
Jreconstxx

for retardance. (28)
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